Algorithms for embedded graphs

Sergio Cabello
University of Ljubljana
Slovenia

(based on work by/with several people)

Nancy 2015
Outline

- Topology and graphs on surfaces
- Algorithmic problems in embedded graphs
- Sample of techniques
A (topological) surface is something that, locally, looks like \mathbb{R}^2

We restrict ourselves to compact, orientable surfaces: each is homeomorphic to a sphere with g handles attached to it. We say the genus of the surface is g.
Surfaces – Polygonal schema

A double torus \((g = 2)\) using a polygonal schema
A closed curve is a continuous mapping $\alpha : S^1 \to$ surface

It is simple if it has no self-intersections (injective)
Topological Concepts

- α, β closed curves
- α, β are homotopic if α can be continuously deformed to β
- deformation within the surface
Topological Concepts

- \(\alpha, \beta \) closed curves
- \(\alpha, \beta \) are homotopic if \(\alpha \) can be continuously deformed to \(\beta \)
- deformation within the surface
Topological Concepts

- α, β closed curves
- α, β are homotopic if α can be continuously deformed to β
- deformation within the surface
Contractible

- α simple closed curve
- α is *contractible* if it is homotopic to a constant mapping

Theorem: α contractible and simple $\Rightarrow \alpha$ bounds a disk
Separating

- α closed curve
- α is *separating* if removing its image disconnects the surface
- related to \mathbb{Z}_2-homology

Theorem: Non-separating \Rightarrow Non-contractible
Embedded Graphs

G is embedded in a surface if:

- each vertex $u \in V(G)$ assigned to a distinct point u
- each edge uv assigned to a simple curve connecting u to v
- interior of edges disjoint from other edges and $V(G)$
- each face is a topological disk (2-cell embedding)
Embedded Graphs – Polygonal Schema
Representations of Embedded Graphs

- rotation system: for each vertex, the circular ordering of its outgoing edges as DCL.
- coordinate-less DCEL:
 - halfedges
 - vertices
 - faces
 - adjacency relations between them
- flags or gem representation
- ...

The surface is implicit in the representation of the graph. Surgery should be doable efficiently.
Embeddable vs Embedded

- **planar** graph: can be embedded in the plane
- **plane** graph: a particular embedding
- an embedding can be obtained from the abstract planar graph in linear time
Embeddable vs Embedded

- **planar** graph: can be embedded in the plane
- **plane** graph: a particular embedding
- an embedding can be obtained from the abstract planar graph in linear time

- **g-graph**: can be embedded in g-surface
- **embedded** g-graph: a particular embedding
- NP-complete: is G a g-graph? [Thomassen ’89]
- The problem is fpt wrt genus g [Mohar ’99]
 - “simpler” algorithm by Kawarabayahi, Mohar and Reed 2008
 - $2^{O(g)}n$ time
 - errors in embedding algorithms [Myrvold and Kocay 2011]
Outline

- Topology and graphs on surfaces
- Algorithmic problems in embedded graphs
- Sample of techniques
Our scenario

Input: an embedded graph G with (abstract) edge-lengths
Cycles/closed walks in G are closed curves in the surface

Actors: algorithms, topology, and the metric d_G
$n \equiv$ complexity of the input graph: $|E(G)|$
The case $g \ll n$ or even $g = O(1)$ is relevant
Algorithmic problems

Input: embedded graph with edge-lengths

- find a shortest non-contractible/non-separating cycle
- find a shortest contractible cycle/walk
- given α, find the shortest cycle homotopic/homologous to α
- find a cycle shortest in its homotopy/homology class
- max $s-t$ flow
- find a shortest planarizing set
- build a 'good' representation of distances in embedded graphs
- find all replacement paths
- approximate optimum TSP
Shortest non-contractible cycle

- most popular and traditional problem
- subroutine for other problems
 - crossing number: does a graph have crossing number $\leq k$?
 - approximation algorithms for TSP in embedded graphs or near-planar graphs [Demaine, Hajiaghayi, Mohar ’07]
 - numerical analysis for Hodge decomposition
- overlap with analysis of meshes arising from scanned data
 - removal of topological noise [Wood et al. ’04]
 - identification of handles and tunnels [Dey et al. ’08]
Find a shortest non-contractible cycle

- C. Thomassen – $O(n^3 \log n)$ '90
- J. Erickson and S. Har-Peled – $O(n^2 \log n)$ '02
- S. Cabello and B. Mohar – $O(g^{O(g)} n^{3/2} \log n)$ '05
- S. Cabello – $O(g^{O(g)} n^{4/3})$ '06
- M. Kutz – $O(g^{O(g)} n \log n)$ '06
- S. Cabello, E. Colin de Verdiere and F. Lazarus $O(gn^k)$ '12
- S. Cabello, E. Chambers and J. Erickson $O(g^2 n \log n)$ '12

All them also work for non-separating, but no metatheorem.

Directed version, combinatorial bounds, etc.
Shortest contractible curve

- contractible closed walk
 - does not need to be a circuit
 - not difficult to solve in polynomial time
 - $O(n \log n)$ \cite{CabelloDeVosEricksonMohar2010}
 - using \cite{LackiSankowski2011}

- contractible cycle without repeated vertices
 - $O(n^2 \log n)$ \cite{Cabello2010}
 - shortest cycle in planar graph with forbidden pairs

\[\text{Sergio Cabello} \quad \text{Embedded graphs} \]
Separating cycles

- does it exist any separating cycle without repeated vertices?
 - NP-hard [Cabello, Colin de Verdière, and Lazarus ’10]
 - reduction from Hamiltonian cycle in 3-regular planar graphs
Summary of some results (up to date?)

<table>
<thead>
<tr>
<th></th>
<th>Cycle</th>
<th>Closed walk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractible</td>
<td>$O(n^2 \log n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Separating</td>
<td>NP-hard</td>
<td>???, FPT wrt g</td>
</tr>
<tr>
<td>Non-contractible</td>
<td>$O(\min{g^2, n} n \log n)$</td>
<td>\leftarrow same</td>
</tr>
<tr>
<td>Non-separating</td>
<td>$O(\min{g^2, n} n \log n)$</td>
<td>\leftarrow same</td>
</tr>
<tr>
<td>Tight</td>
<td>\uparrow same</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Splitting</td>
<td>NP-hard</td>
<td>NP-hard, FPT wrt g</td>
</tr>
<tr>
<td>Prescribed homotopy</td>
<td>???</td>
<td>nice polynomial</td>
</tr>
<tr>
<td>Prescribed homology</td>
<td>NP-hard, FPT wrt g</td>
<td>\leftarrow same</td>
</tr>
</tbody>
</table>
Outline

- Topology and graphs on surfaces
- Algorithmic problems in embedded graphs
- Sample of techniques
Unique shortest paths via Isolation Lemma

- unique shortest path between any two vertices
- probabilistically enforced using Isolation Lemma:
 - perturb each edge-length $\ell(e)$ by $k_e \cdot \varepsilon$, where $k_e \in \{1, \ldots, |E|^2\}$ at random
 - each shortest path is unique whp
 - more efficient than lexicographic comparison
- simpler arguments
3-path condition

P_1, P_2, P_3 three paths from $x \in V(G)$ to a common endpoint

loops $P_1 + P_3$ and $P_2 + P_3$ contractible

\Downarrow

loop $P_1 + P_2$ contractible

- shortest non-contractible loop from x made of two shortest paths
- if T_x shortest path tree from x, only loops $\text{loop}(T_x, e)$ are candidates
- there are $|E(G)| - (n - 1)$ candidate loops
3-path condition

Set L_x of loops from x satisfies 3-path condition if:

for any three paths P_1, P_2, P_3 from x to a common endpoint, if $P_1 + P_3$ and $P_2 + P_3$ are in L_x, then $P_1 + P_2$ is in L_x

- $L_x \sim$ zeros in some sense
- contractible loops
- loops with even number of edges
- shortest loop from x outside L_x (non-zero) is made of two shortest paths and an edge
- if membership in L_x is testable in polynomial time, finding shortest loop outside L_x solvable in polynomial time
3-path condition

Set L_x of loops from x satisfies 3-path condition if:

for any three paths P_1, P_2, P_3 from x to a common endpoint, if $P_1 + P_3$ and $P_2 + P_3$ are in L_x, then $P_1 + P_2$ is in L_x

- $L_x \sim$ zeros in some sense
- contractible loops
- loops with even number of edges
- shortest loop from x outside L_x (non-zero) is made of two shortest paths and an edge
- if membership in L_x is testable in polynomial time, finding shortest loop outside L_x solvable in polynomial time
- iterate over $x \in V(G)$ for global shortest
Tree-cotree partition - Planar

\(G \) planar. \(T \) a spanning tree
Tree-cotree partition - Planar

G planar. T a spanning tree

$G^* - E(T)^*$ is a spanning tree of the dual graph G^*
Tree-cotree partition - General

G embedded graph.
T a spanning tree of G
$C \subset E(G)$ cotree: C^* spanning tree of G^* disjoint from $E(T)^*$
X edges not in T or C. $X = \{e \in E(G) \mid e \notin E(T) \cup E(C)\}$

- (T, C, X) is a tree-cotree partition
- X has $2g$ edges (orientable) or g edges (non-orientable)
- (C^*, T^*, X^*) a tree-cotree partition of G^*
- for any $e \in X$, the cycle in $T + e$ is non-separating
Tree-cotree partition - Example
Tree-cotree partition - Example
Tree-cotree partition - Example
Tree-cotree partition - Cut graph

G embedded graph

$H \subset G$ a cut graph if $G \not\cong H$ is planar

- (T, C, X) is a tree-cotree partition of G
- $T \cup X$ is a cut graph: join faces according to C^*
- By duality, $C^* \cup X^*$ is a cut graph
Tree-cotree partition - Nice loops

\(G \) embedded graph

\((T, C, X)\) is a tree-cotree partition of \(G \)

\(A = C \cup X \)

\(e \in A \)

\[\Rightarrow \text{loop}(T, e) \text{ contractible } \iff A^* - e^* \text{ has a tree component} \]

\[\Rightarrow \text{if loop}(T, e) \text{ contractible } \Rightarrow \text{loop}(T, e) \text{ bounds a disk } D \Rightarrow \]

\[\text{if } A - e \text{ contains a cotree of } G \cap D \]

\[\Rightarrow \text{if } A - e \text{ contains a cotree of } G \cap D \Rightarrow \text{deform } e \text{ along } A^* - e^* \]

\[\Rightarrow \text{cycle homotopic to } A - e \text{ loop}(T, e) \text{ disjoint from } A^* \Rightarrow \]

\[\text{loop}(T, e) \text{ contractible} \]
Nice loops - Contractible
Nice loops - Contractible
Tree-cotree partition - Nice loops

G embedded graph
(T, C, X) is a tree-cotree partition of G
$A = C \cup X$
$e \in A$

$\Rightarrow \text{loop}(T, e)$ separating ifff $A^* - e^*$ disconnected

- $A^* - e^*$ gives a way to merge faces
Embedded graphs
Embedded graphs
Shortest non-contractible loop

G embedded graph
$x \in V(G)$
L_x contractible loops from x Compute shortest loop outside L_x
 ▶ compute shortest path tree T from x
 ▶ compute dual $A^* = G^* - E(T)^*$
 ▶ compute $B = \{e \in A \mid A^* - e^* \text{ has no tree-component}\}$
 ▶ compute

$$e = \arg \min_{uv \in B} \{d_T(x, u) + d_T(x, v) + |uv|\}$$

 ▶ return loop$(T, e)$$$
⇒$$ linear time per vertex x
Theorem

Let f be a specified face in an embedded graph G. Preprocess G in $O(g^2 n \log n)$ time such that:

\[
\text{query } (u, v) \in V \times f \quad \xrightarrow{O(\log n) \text{ time}} \quad \text{distance } d_G(u, v)
\]

- compute sp-tree (shortest path) at one vertex
- iteratively move to the neighbor in the face and update the sp-tree
Representation of some distances - Planar

Approach for planar graphs
- compute sp-tree at one vertex of the face
- iteratively move to the neighbor in the face and update the sp-tree
- efficient dynamic data structures to detect what edges come in and out
- reminiscence of kinetic data structures
- use of tree-cotree decomposition
- each (directed) edge appears in a contiguous family of sp-trees (via crossing argument)
- persistence
Parity of crossings of cycles for separating cycles

- \(\alpha\) and \(\beta\) cycles in \(G\)
- \(cr(\alpha, \beta) = \min cr(\alpha', \beta)\) over all tiny deformations \(\alpha'\) of \(\alpha\)
- \(cr_2(\alpha, \beta) = cr(\alpha, \beta) \mod 2\)
- computing \(cr_2(\alpha, \beta)\) is easy
 - invariant under tiny deformations
- useful to work over \(\mathbb{Z}_2\)-homology
- \(\alpha\) separating iff \(cr_2(\alpha, \cdot) = 0\)
- \(cr_2 : H_1 \times H_1\) is well-defined and bilinear
Shortest separating cycle

- \textit{max independent set reduces to: shortest cycle in planar graph with forbidden pairs}

- \textit{surgery to represent the forbidden pairs}

- \textit{separating cycle} \iff \text{crosses any closed curve even nb of times}
Conclusions

- A taste of the algorithmic problems for embedded graphs
- A taste of the techniques
- Gap theory-practice
- Representation-free algorithms
- H-minor-free graphs
- Simple simplicial complexes, like $\beta_i = O(1)$ for all i.

Sergio Cabello
Embedded graphs