Periodic meshes for the CGAL library

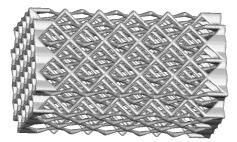
Aymeric Pellé Monique Teillaud

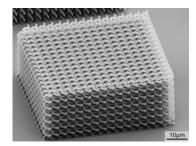
Sophia Antipolis - Méditerranée Nancy - Grand Est

Computational geometry in non-Euclidean spaces Nancy, August 2015

Motivation: applications

- Material engineering
- Nano-structures





bone scaffolding M. Moesen, K.U. Leuven

photonic crystal M. Blome, Zuse Institut Berlin

ъ

Existing tools

Computational Geometry Algorithms Library www.cgal.org

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

- Open source, GPL (+ commercial licences through GEOMETRYFACTORY)
- Generic (C++ templates)
- Robust ("Exact Geometric Computation")
- Efficient (arithmetic filtering)

Existing tools

Computational Geometry Algorithms Library www.cgal.org

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Open source, GPL (+ commercial licences through GEOMETRYFACTORY)
- Generic (C++ templates)
- Robust ("Exact Geometric Computation")
- Efficient (arithmetic filtering)
- Large variety of packages, in particular
 - 3D periodic triangulations
 - 3D mesh generation

triangulations in the 3D flat torus $\mathbb{T}^3 = \mathbb{R}^3 / \mathcal{G}$, $\mathcal{G} = \langle t_x, t_y, t_z \rangle$

 \mathcal{P} set of *n* points in the fundamental domain **Delaunay** triangulation defined by \mathcal{P}

 defined as a simplicial complex no 1- or 2- cycles in graph of edges

triangulations in the 3D flat torus $\mathbb{T}^3 = \mathbb{R}^3 / \mathcal{G}$, $\mathcal{G} = \langle t_x, t_y, t_z \rangle$

 \mathcal{P} set of *n* points in the fundamental domain **Delaunay** triangulation defined by \mathcal{P}

 defined as a simplicial complex no 1- or 2- cycles in graph of edges

triangulations in the 3D flat torus $\mathbb{T}^3 = \mathbb{R}^3 / \mathcal{G}$, $\mathcal{G} = \langle t_x, t_y, t_z \rangle$

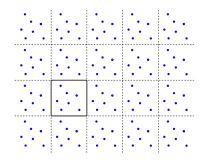
 \mathcal{P} set of *n* points in the fundamental domain **Delaunay** triangulation defined by \mathcal{P}

GP

・ ロ ト ・ 雪 ト ・ 目 ト

= 900

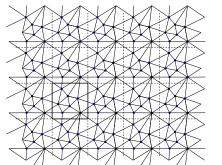
 defined as a simplicial complex no 1- or 2- cycles in graph of edges



triangulations in the 3D flat torus $\mathbb{T}^3 = \mathbb{R}^3 / \mathcal{G}$, $\mathcal{G} = \langle t_x, t_y, t_z \rangle$

 \mathcal{P} set of *n* points in the fundamental domain **Delaunay** triangulation defined by \mathcal{P}

 defined as a simplicial complex no 1- or 2- cycles in graph of edges



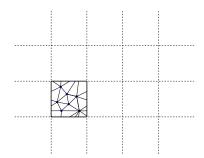
 $DT(\mathcal{GP})$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

triangulations in the 3D flat torus $\mathbb{T}^3 = \mathbb{R}^3 / \mathcal{G}$, $\mathcal{G} = \langle t_x, t_y, t_z \rangle$

 \mathcal{P} set of *n* points in the fundamental domain **Delaunay** triangulation defined by \mathcal{P}

 defined as a simplicial complex no 1- or 2- cycles in graph of edges



$$\begin{split} \mathbb{T}^2 &= \mathbb{R}^2 / \mathcal{G} \\ \pi : \mathbb{R}^2 \to \mathbb{T}^2 \end{split}$$

 $DT_{\mathbb{T}^2}(\mathcal{P}) = \pi(DT(\mathcal{GP}))$ if it is a simplicial complex

triangulations in the 3D flat torus $\mathbb{T}^3 = \mathbb{R}^3 / \mathcal{G}$, $\mathcal{G} = \langle t_x, t_y, t_z \rangle$

Incremental algorithm

- starts in 27-sheeted covering space ℝ³/𝔅₃,
 𝔅₃ =< 3 ⋅ t_x, 3 ⋅ t_y, 3 ⋅ t_z >
- computation in T³ as soon as sufficient condition on empty ball diameters is satisfied (< cube_size/2)

- \longrightarrow randomized worst-case optimal algorithm
- \rightarrow generalizes to general closed Euclidean *d*-manifolds

[M. Caroli & M. T., ESA'09, SoCG'11]

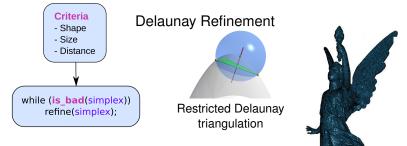
triangulations in the 3D flat torus $\mathbb{T}^3 = \mathbb{R}^3 / \mathcal{G}$, $\mathcal{G} = \langle t_x, t_y, t_z \rangle$

Periodic Delaunay triangulation package

- fully dynamic (insertion/removal)
- all degeneracies handled
- copies of input points *only if needed* (avoided in practice)
- running time \simeq 10 million points in 13 sec (only \simeq 30% overhead with respect to CGAL non-periodic Delaunay triangulations)
- users in various fields

[M. Caroli & M. T., CGAL 3.5, 2009] 2D [N. Kruithof, CGAL 4.3, 2013]

CGAL 3D volume mesh generation



• flexible: oracle

surface known through intersection with segment

- input: closed triangulated surface output: 722,018 tetrahedra in 66.7s.
- multi-core in CGAL 4.5

[Alliez, Jamin, Rineau, Tayeb, Tournois, Yvinec]

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

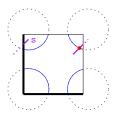
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Interface with the 3D periodic triangulations package, e.g.

- a vertex is associated with several points
 ⇒ modify CGAL code v→point() → t.point(v)
- periodic criteria need more information to access points
 additional template parameter

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Semantics of periodic oracle and criteria, *e.g.* for surface *S*, compute_intersection (Segment s)



there are cases for which

- ${\tt s}$ does not intersect ${\cal S}$ in the domain
- a translated copy intersects $\ensuremath{\mathcal{S}}$ in the domain

⇒ If first call does not find an intersection, then call again with appropriate translated image

Requires periodic weighted Delaunay triangulations for

- optimizations
- handling sharp features
- Also needed by users (without meshes)

talks by M. Schindler and J. Hiddings

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• \simeq ready for integration into CGAL 4.8 (2016)

CGAL 3D periodic mesh generation

- code to be polished
- to be submitted to the CGAL editorial board and reviewed

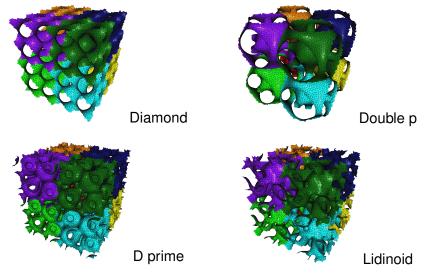
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

release expected in CGAL 4.9 (end 2016)

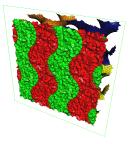


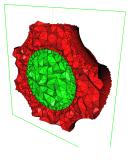
one copy computed

periodic copies fit together



・ロト・西ト・ヨト・ヨー シック・



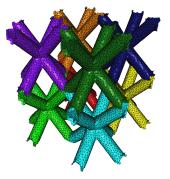


interior

interior and exterior

multi-domain

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●



bone scaffolding data M. Moesen K.U. Leuven

photonic crystal data M. Blome Zuse Institut Berlin