Quasiconformal distortion of projective maps and discrete conformal maps

> with Stefan Born and Ulrike Bücking arXiv:1505.01341

Bobenko, Pinkall, S Discrete conformal maps and ideal hyperbolic polyhedra *Geom. Topol.* 19-4 (2015), 2155-2215

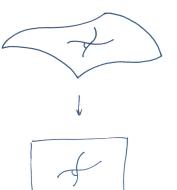
> S, Schröder, Pinkall Conformal equivalence of triangle meshes ACM Transactions on Graphics 27:3 (2008)

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - - - の Q ()

conformal means angle preserving

 lengths scaled by conformal factor independent of direction

 $\|df_p(v)\| = e^{u(p)} \|v\|$



 looks like a similarity transformation when zooming in

conformal means angle preserving

 lengths scaled by conformal factor independent of direction

 $\|df_p(v)\| = e^{u(p)} \|v\|$

 looks like a similarity transformation when zooming in

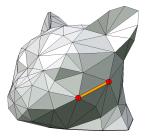
1 Discrete conformal maps: scale factors

Definition (Luo 2004)

Two triangulated surfaces are discretely conformally equivalent, if

- (i) triangulations are combinatorially equivalent
- (ii) edge lengths ℓ_{ij} and $\tilde{\ell}_{ij}$ related by

$$\tilde{\ell}_{ij} = e^{rac{1}{2}(u_i+u_j)}\ell_{ij}$$



・ロト ・四ト ・ヨト ・ヨト ・ヨ

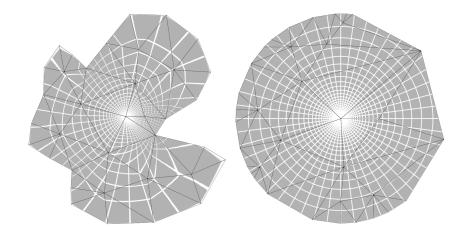
Leads to rich theory with connections to hyperbolic geometry.

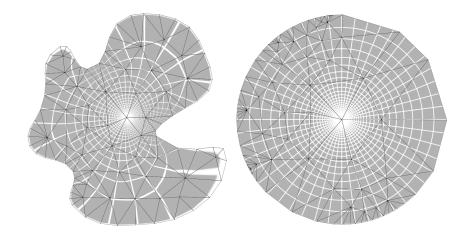
1 Discrete conformal maps: length cross ratio

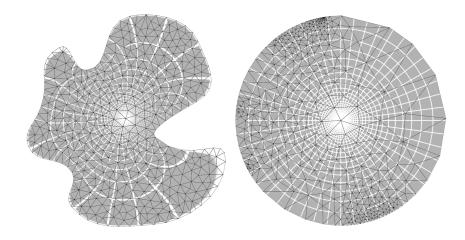
For interior edges *ij* define *length cross ratio*

$$\mathsf{lcr}_{ij} = \frac{\ell_{ih}\,\ell_{jk}}{\ell_{hj}\,\ell_{ki}}$$

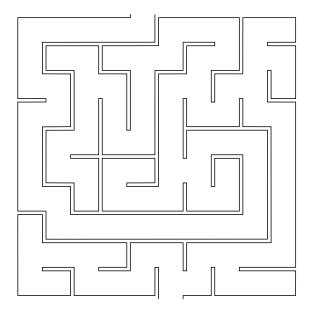
Theorem ℓ , $\tilde{\ell}$ discretely conformally equivalent $\iff \widetilde{lcr} = lcr$



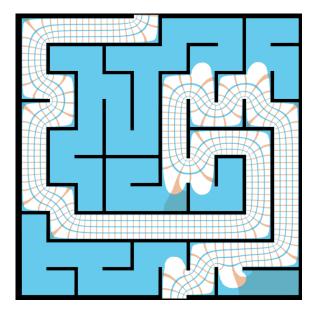




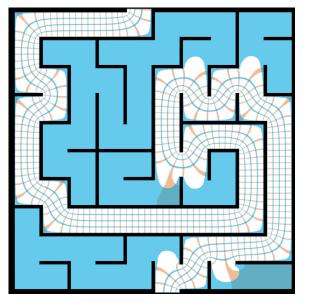
・ロト ・回ト ・目ト

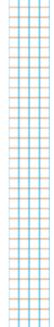


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

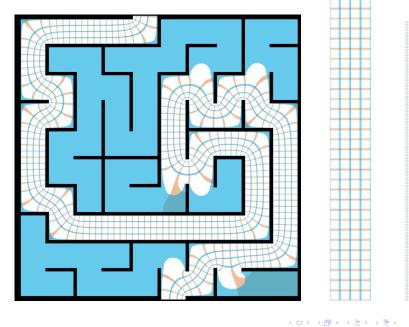


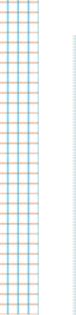
▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ(?)



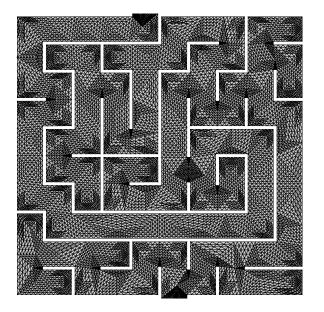


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●





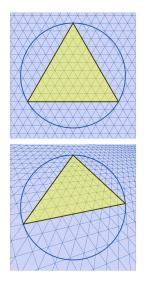
æ



- How to interpolate over triangles?
- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps

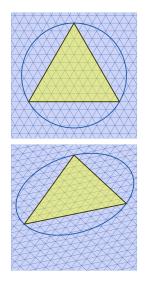
piecewise linear

- How to interpolate over triangles?
- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps



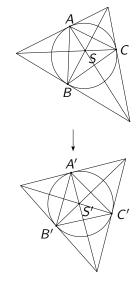
・ロト ・聞ト ・ヨト ・ヨト

- How to interpolate over triangles?
- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps



ヘロト ヘ回ト ヘヨト ヘヨト

- How to interpolate over triangles?
- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps



S, S': symmedian (Lemoine, Grebe) points

How to interpolate over triangles?

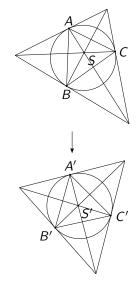
- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps

Theorem

cpp maps fit together continuously across edges

 \iff

triangulations are discretely conformally equivalent

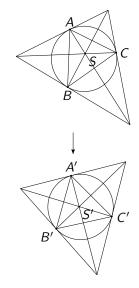


S, *S*': symmedian (Lemoine, Grebe) points

How to interpolate over triangles?

- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps

Definition discrete conformal map: simplicial map, cpp on triangles



S, S': symmedian (Lemoine, Grebe) points

- How to interpolate over triangles?
- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps

Definition discrete conformal map: simplicial map, cpp on triangles

cpp interpolation is "visibly smoother"

срр

- How to interpolate over triangles?
- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps

Definition discrete conformal map: simplicial map, cpp on triangles

cpp interpolation is "visibly smoother"

piecewise linear

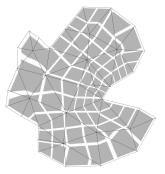
< 4 ₽ > < 3 >

How to interpolate over triangles?

- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps

Definition discrete conformal map: simplicial map, cpp on triangles

cpp interpolation is "visibly smoother"



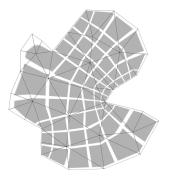
linear

How to interpolate over triangles?

- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps

Definition discrete conformal map: simplicial map, cpp on triangles

cpp interpolation is "visibly smoother"

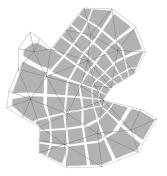


срр

- How to interpolate over triangles?
- piecewise linear always works
- better: circumcircle preserving piecewise projective (cpp) maps

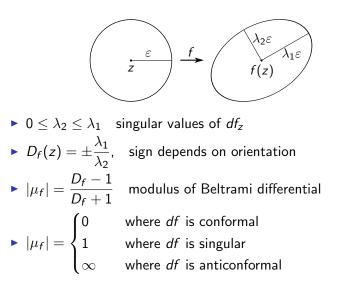
Definition discrete conformal map: simplicial map, cpp on triangles

- cpp interpolation is "visibly smoother"
- ► Why?
- Lower quasiconformal distortion?



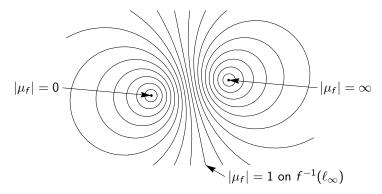
срр

2 Quasiconformal distortion



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

3 Distortion of a projective map

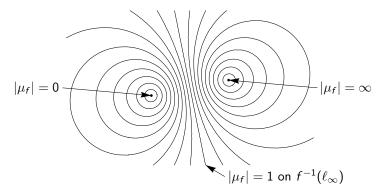


Theorem

(i) If projective map $f : \mathbb{R}P^2 \to \mathbb{R}P^2$ is not affine, contourlines of $|\mu_f|$ form a hyperbolic pencil of circles.

 (ii) This hyperbolic pencil of circles is mapped to another hyperbolic pencil of circles.

3 Distortion of a projective map



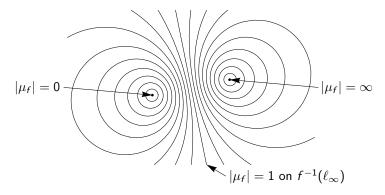
・ロト ・聞ト ・ヨト ・ヨト

3

Corollary

If f is orientation preserving on triangle ABC, then $\max_{z \in ABC} |\mu_f(z)|$ is attained at A,B, or C.

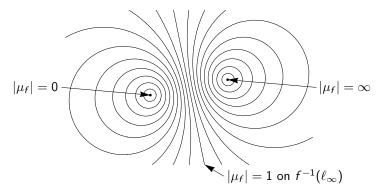
3 Distortion of a projective map & circles mapped to circles



▶ Which circles are mapped to circles by a projective map *f*?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

3 Distortion of a projective map & circles mapped to circles



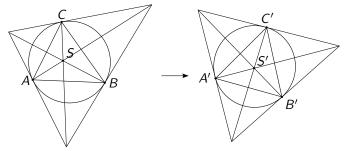
▶ Which circles are mapped to circles by a projective map f?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

- If $f \in Sim$: all circles
- If $f \in Aff \setminus Sim$: no circle
- If $f \notin Aff$: exactly one hyperbolic pencil of circles

4 Distortion of circumcircle preserving projective map

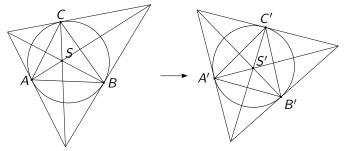


Theorem If $f : ABC \rightarrow A'B'C'$ is a cpp map, then

$$|\mu_f(A)| = |\mu_f(B)| = |\mu_f(C)| = |\mu_h|,$$

where h is the affine map $ABC \rightarrow A'B'C'$.

4 Distortion of circumcircle preserving projective map



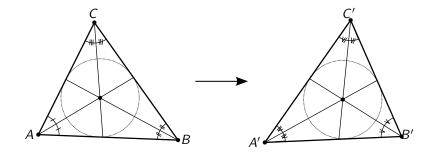
Theorem If $f : ABC \rightarrow A'B'C'$ is a cpp map, then

$$|\mu_f(A)| = |\mu_f(B)| = |\mu_f(C)| = |\mu_h|,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where h is the affine map $ABC \rightarrow A'B'C'$.

 cpp interpolation better than linear interpolation (except at vertices) 5 Angle bisector preserving projective map



イロト イ押ト イヨト イヨト

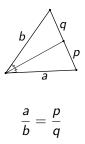
Theorem

Of all projective maps $ABC \rightarrow A'B'C'$, the angle bisector preserving projective map (app map) simultaneously minimizes $|\mu_f(A)|$, $|\mu_f(B)|$, $|\mu_f(C)|$. 5 Angle bisector preserving projective map

Theorem

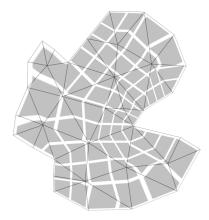
Two triangulations are discretelely conformally equivalent \Leftrightarrow *app maps are continuous across edges.*

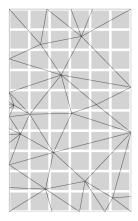
follows from angle bisector theorem



5 Angle bisector preserving projective map

Which interpolation looks best?

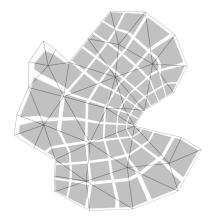


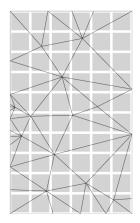


linear

5 Angle bisector preserving projective map

Which interpolation looks best?





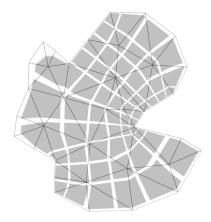
イロト イポト イヨト イヨト

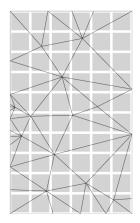
- 32

app

5 Angle bisector preserving projective map

Which interpolation looks best?





イロト イポト イヨト イヨト

- 32

срр

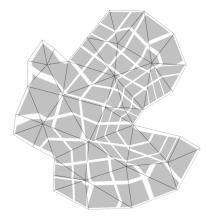
- ▶ Barycenter has barycentric coordinates [1, 1, 1]
- ▶ Incircle center has barycentric coordinates [*a*, *b*, *c*]
- ▶ Symmedian point has barycentric coordinates [*a*², *b*², *c*²]

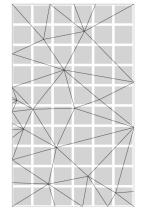
- ▶ Barycenter has barycentric coordinates [1, 1, 1]
- ▶ Incircle center has barycentric coordinates [*a*, *b*, *c*]
- ▶ Symmedian point has barycentric coordinates [*a*², *b*², *c*²]
- Exponent-*t*-center has barycentric coordinates $[a^t, b^t, c^t]$

- ▶ Barycenter has barycentric coordinates [1, 1, 1]
- ▶ Incircle center has barycentric coordinates [*a*, *b*, *c*]
- Symmedian point has barycentric coordinates $[a^2, b^2, c^2]$
- ► Exponent-*t*-center has barycentric coordinates [*a^t*, *b^t*, *c^t*]

Theorem

The projective maps that map exponent-t-centers to exponent-t-centers fit together continuously across edges if, and for $t \neq 0$ only if, the triangulations are discretely conformally equivalent.

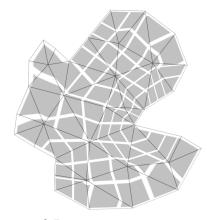


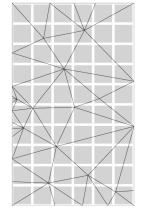


(日)、

3

t = -1.0

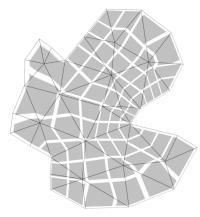


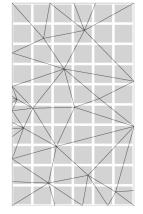


(日)、

3

t = -0.5

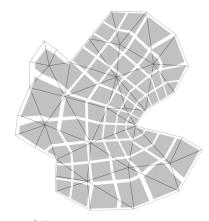


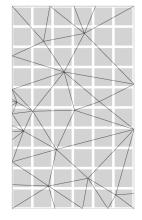


(日)、

- 3

t = 0.0 (linear)

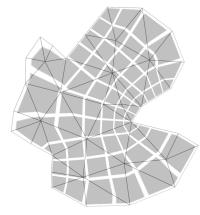


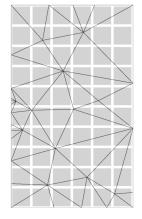


(日)、

- 3

t = 0.5

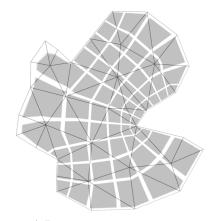


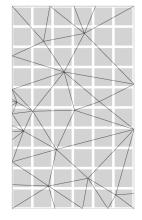


(日)、

- 3

t = 1.0 (app)

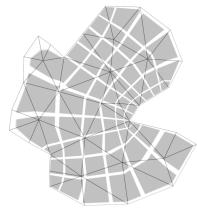


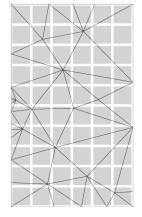


(日)、

- 3

t = 1.5

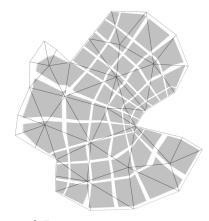


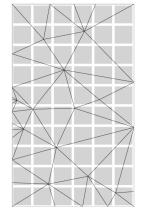


(日)、

- 3

t = 2.0 (cpp)

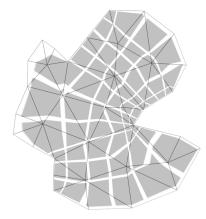


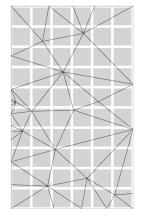


(日)、

- 3

t = 2.5





э

t = 3.0