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Impossible triangulations

Theorem
If a triangulation of S2 has exactly two vertices of odd degree,
then these are not adjacent.

By contrast, one may have:

▸ Two non-adjacent or more than two adjacent odd vertices.

▸ Two adjacent on the torus and on the projective plane.
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Reduction to even triangulations of polygons

First proof.
Assume such a triangulation exists.
Remove the edge joining the odd vertices
(and the adjacent triangles). Get a square,
triangulated with all vertices of even degree.

Thus, Theorem ⇔ the square has no even triangulation.

Lemma
An n-gon has a triangulation with all vertices of even degree ⇔
n ≡ 0(mod 3).

no no
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Even triangulations and colorings

Lemma
An n-gon has a triangulation with all vertices of even degree ⇔
n ≡ 0(mod 3).

Proof.
An even triangulation can be vertex-colored in 3 colors:
color one triangle; this extends uniquely along any path;
extensions along different paths don’t contradict,
due to the even degrees and to the simply-connectedness.
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Even triangulations and colorings
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Even degrees ⇒ colors of the boundary vertices repeat
cyclically 1→ 2→ 3→ 1→ ⋯. Hence n is divisible by 3.



A generalization

Theorem
For any k ∈ {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S2 are divisible by k, then the exceptional
vertices are not adjacent.

The proof can be given in terms of a vertex coloring subject to a
certain local pattern. Number of colors needed:

k 2 3 4 5
colors 3 4 6 12

(Can you guess where do these numbers come from?)

But let’s introduce a different technique.
Go back to the theorem on two odd vertices.
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Color or cover
Given: a triangulated surface (with any number of odd vertices).

▸ Choose a base triangle and color its vertices arbitrarily.
▸ Extend the coloring along every path.
▸ Some paths can contradict each other.

Instead of “putting a new layer of paint”, create a new layer of
triangles and color them as needed.
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Compare: extending a holomorphic function f ∶U → C along
different paths can produce different values at the same point.
These “branches” of f form the Riemann surface of f .
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Coloring monodromy

Definition
Let M be a triangulated surface, ∆0 a triangle in M, and
a1, . . . ,an vertices of odd degree. The coloring monodromy

π1(M ∖ {a1, . . . ,an},∆0) → Sym(∆0) ≅ Sym3

is a group homomorphism that sends every path starting and
ending at ∆0 to the corresponding vertex re-coloring of ∆0.

Example
In the 7-vertex triangulation of the
torus all vertices have degree 6.
The coloring monodromy

Z2
≅ π1(M) → Sym3

permutes the colors in a 3-cycle.
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Two odd-degree vertices: second proof
Assume we have a triangulation of S2 with only two odd degree
vertices a,b, which are adjacent.

Since π1(S2
∖ {a,b}) ≅ Z, the coloring monodromy

π1(S2
∖ {a,b}) → Sym3

has a cyclic subgroup of Sym3 as its image.

On the other hand, going around a and going around b
permutes the colors by two different transpositions.
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Hence the image must be the whole Sym3. Contradiction.
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The coloring monodromy (the “group of projectivities”) was
introduced in

[Joswig’02] Projectivities in simplicial complexes and colorings
of simple polytopes.

The associated branched cover was introduced and studied in

[I.-Joswig’03] Branched coverings, triangulations, and
3-manifolds.

The focus was on triangulations of S3 with the edges of odd
degrees forming a knot.



References

The coloring monodromy (the “group of projectivities”) was
introduced in

[Joswig’02] Projectivities in simplicial complexes and colorings
of simple polytopes.

The associated branched cover was introduced and studied in

[I.-Joswig’03] Branched coverings, triangulations, and
3-manifolds.

The focus was on triangulations of S3 with the edges of odd
degrees forming a knot.



Platonic monodromy
For k = 3,4,5 let P = tetrahedron, octahedron, icosahedron.
Match one of the faces of P with the base triangle of S2.
Rolling P along a closed path produces a symmetry of P.
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Rolling around a vertex of degree divisible by k produces the
identity.

Hence we have the platonic monodromy

π1(M ∖ {a1, . . . ,an},∆0) → Sym(P)

where a1, . . . ,an are vertices of degrees non-divisible by k .



Platonic monodromy
For k = 3,4,5 let P = tetrahedron, octahedron, icosahedron.
Match one of the faces of P with the base triangle of S2.
Rolling P along a closed path produces a symmetry of P.

2

1

4

2 3

1

2

4
1

3

3

4

Rolling around a vertex of degree divisible by k produces the
identity.
Hence we have the platonic monodromy

π1(M ∖ {a1, . . . ,an},∆0) → Sym(P)

where a1, . . . ,an are vertices of degrees non-divisible by k .



Two vertices of degree /≡ 0(mod k) cannot be adjacent

Assume we have a triangulation of S2 with only two vertices a,b
of degrees non-divisible by k .

The platonic monodromy of this triangulation:

Z ≅ π1(S2
∖ {a,b}) → Sym(P) (∗)

Assume that a,b are adjacent and belong to the base triangle.

Then rolling around a and rolling around b produce two
non-commuting symmetries of P.

Hence the image of (∗) is non-commutative. Contradiction.
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Platonic colorings

Can try to mimic the first proof of the “two odd vertices”
theorem.

Instead of platonic monodromy, consider vertex-colorings in 4,
6, or 12 colors, which are the vertices of the tetrahedron,
octahedron, icosahedron.

k = 3: colorings in 4 colors, where not only adjacent vertices
are colored differently, but also those lying “across an edge”.

k = 4: colorings in colors 1,2, . . . ,6, where the colors of two
vertices across an edge add up to 7 (the dice rule).

k = 5: colorings in 12 colors, the coloring rule is complicated...



The minimal colored cover
Holomorphic function ↦ monodromy ↦ Riemann surface S with
a well-defined function and a branched cover S → C ∪ {∞}

Triangulation Σ ↦ coloring monodromy ↦ triangulation Σ̃ that
can be colored, together with a branched cover Σ̃→ Σ.
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Definition
The minimal colored cover Σ̃ of a triangulated surface Σ:

{(∆, ϕ) ∣∆ ∈ Σ, ϕ∶Vert(∆) → {1,2,3}} / ∼

Two adjacent colored triangles are glued along their common
side if their colorings on that side agree.

The minimality:
a colored surface that covers Σ covers also Σ̃.

T //

��>>>>>>>> Σ̃

��
Σ
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The space of germs
The platonic monodromy ↦ a branched cover of Σ made out of
triangles of Σ “colored” by triangles of a platonic solid P.

Coloring Σ by P ⇔ coloring P by Σ. The construction is
symmetric and can be applied to any two triangulations.

Definition
Given two triangulated surfaces Σ,Σ′.
The space of germs G(Σ,Σ′) consists of triples

(∆,∆′, ϕ), ∆ ∈ Σ, ∆′ ∈ Σ′, ϕ∶Vert(∆) → Vert(∆′)

Each triple is a triangle; two triangles are glued side-to-side if
they are obtained by “rolling Σ over Σ′”.

Naturally, G(Σ,Σ′) covers Σ and Σ′.

The universality property:
a surface that covers both Σ and Σ′,
covers also G(Σ,Σ′).

T
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And now, geometry: Cone-metrics
Put a metric on a triangulated surface Σ by viewing every
triangle as an equilateral one with angles equal to 2π

k .

k = 6: euclidean triangles, all edges have equal lengths.
k < 6: spherical triangles.
k > 6: hyperbolic triangles.

The result is a (euclidean, spherical, hyperbolic) metric with
cone singularities. (The intrinsic metric “doesn’t see” the edges,
but sees the total angles around the vertices.)

Example
3π
2
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One more impossible triangulation

Theorem
There is no triangulation of the sphere with 12 vertices of
degree 5 and one vertex of degree 6.

Proof.
Replace every triangle by a spherical one with the angles 2π

5 .
Get a spherical metric with only one cone point (of angle 12π

5 ).

But there are no spherical cone-metrics
with a single cone point.

By contrast, there exist triangulated spheres with 12 vertices of
degree 5 and n vertices of degree 6 for all n ∈ {0,2,3,4, . . .}.



One more impossible triangulation

Theorem
There is no triangulation of the sphere with 12 vertices of
degree 5 and one vertex of degree 6.

Proof.
Replace every triangle by a spherical one with the angles 2π

5 .
Get a spherical metric with only one cone point (of angle 12π

5 ).

But there are no spherical cone-metrics
with a single cone point.

By contrast, there exist triangulated spheres with 12 vertices of
degree 5 and n vertices of degree 6 for all n ∈ {0,2,3,4, . . .}.



One more impossible triangulation

Theorem
There is no triangulation of the sphere with 12 vertices of
degree 5 and one vertex of degree 6.

Proof.
Replace every triangle by a spherical one with the angles 2π

5 .
Get a spherical metric with only one cone point (of angle 12π

5 ).

But there are no spherical cone-metrics
with a single cone point.

By contrast, there exist triangulated spheres with 12 vertices of
degree 5 and n vertices of degree 6 for all n ∈ {0,2,3,4, . . .}.



The holonomy

Away from the cone points, a cone-surface is locally isometric
to the (euclidean plane, sphere, hyperbolic plane).
This allows to develop the neighborhood of every path.

A closed path can develop to a non-closed one.
The neighborhood of the endpoint is “translated and rotated”
with respect to the neighborhood of the starting point.

Definition
Choose a base point p ∈ M and fix a local isometry of its
neighborhood to (E2,S2,H2

). The map

π1(M ∖Msing) → Iso(E2,S2,H2
)

is called the holonomy of the cone-surface.
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The developing map

If the holonomy is trivial, then the cone-surface can be mapped
to (E2,S2,H2

) in a locally isometric way.
A cone point of angle /≡ 0(mod 2π) always produces non-trivial
holonomy.

Proposition
If M is simply-connected and the angles around all cone points
are multiples of 2π, then the holonomy is trivial, so that there is
a map

dev∶M → (E2,S2,H2
)

which is a local isometry away from the cone points.

In the general case, the developing map goes from the
universal cover of M ∖Msing to (E2,S2,H2

).
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Two exceptional vertices: a geometric proof
Theorem
For any k ∈ {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S2 are divisible by k, then the exceptional
vertices are not adjacent.

Geometric proof.
Replace each triangle by a spherical one with the angles 2π

k .
Cut along the edge joining the exceptional vertices.
Get a disk with cone points whose angles are multiples of 2π.
Map it to the sphere by the developing map.

`k

2π
k

`kdev(a)

dev(b)
`k

The two sides of the slit go to two different geodesics of length
`k with the same endpoints. Contradiction.
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Impossible torus triangulations and non-toral graphs

Theorem (Jendrol’, Jukovic̆ ’72)
There is no triangulation of the torus with the vertex degrees
5,6, . . . ,6,7.

New proof: [I., Kusner, Rote, Springborn, Sullivan ’13].
Make every triangle equilateral euclidean. Obtain a euclidean
metric with two cone-singularities. Study its holonomy.

As a corollary, every graph with these vertex degrees is not
embeddable in the torus.
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