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Impossible triangulations

Theorem
If a triangulation of S? has exactly two vertices of odd degree,
then these are not adjacent.



Impossible triangulations

Theorem

If a triangulation of S? has exactly two vertices of odd degree,
then these are not adjacent.

By contrast, one may have:

» Two non-adjacent or more than two adjacent odd vertices.
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» Two adjacent on the torus and on the projective plane.
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Reduction to even triangulations of polygons

First proof.

Assume such a triangulation exists.
Remove the edge joining the odd vertices
(and the adjacent triangles). Get a square,
triangulated with all vertices of even degree.

Thus, Theorem <« the square has no even triangulation.



Reduction to even triangulations of polygons

First proof.

Assume such a triangulation exists.

Remove the edge joining the odd vertices
(and the adjacent triangles). Get a square,
triangulated with all vertices of even degree.

Thus, Theorem <« the square has no even triangulation.

Lemma

O

An n-gon has a triangulation with all vertices of even degree <

n=0(mod 3).
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Even triangulations and colorings

Lemma
An n-gon has a triangulation with all vertices of even degree <
n=0(mod 3).

Proof.

An even triangulation can be vertex-colored in 3 colors:
color one triangle; this extends uniquely along any path;
extensions along different paths don’t contradict,

due to the even degrees and to the simply-connectedness.



Even triangulations and colorings

Lemma
An n-gon has a triangulation with all vertices of even degree <
n=0(mod 3).

Proof.

An even triangulation can be vertex-colored in 3 colors:
color one triangle; this extends uniquely along any path;
extensions along different paths don’t contradict,

due to the even degrees and to the simply-connectedness.
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Even degrees = colors of the boundary vertices repeat
cyclically 1 -2 -3 - 1 - ---. Hence n is divisible by 3. ]



A generalization

Theorem

For any k € {2,3,4,5}, if degrees of all but two vertices of a

triangulation of S? are divisible by k, then the exceptional
vertices are not adjacent.



A generalization

Theorem

For any k € {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S? are divisible by k, then the exceptional
vertices are not adjacent.

The proof can be given in terms of a vertex coloring subject to a
certain local pattern. Number of colors needed:

kK |2
colors || 3

(Can you guess where do these numbers come from?)
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A generalization

Theorem

For any k € {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S? are divisible by k, then the exceptional
vertices are not adjacent.

The proof can be given in terms of a vertex coloring subject to a
certain local pattern. Number of colors needed:

kK |2
colors || 3

(Can you guess where do these numbers come from?)
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But let’s introduce a different technique.
Go back to the theorem on two odd vertices.



Color or cover
Given: a triangulated surface (with any number of odd vertices).
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» Choose a base triangle and color its vertices arbitrarily.
» Extend the coloring along every path.
» Some paths can contradict each other.



Color or cover

Given: a triangulated surface (with any number of odd vertices).
» Choose a base triangle and color its vertices arbitrarily.
» Extend the coloring along every path.
» Some paths can contradict each other.
Instead of “putting a new layer of paint”, create a new layer of
triangles and color them as needed.
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Color or cover
Given: a triangulated surface (with any number of odd vertices).
» Choose a base triangle and color its vertices arbitrarily.
» Extend the coloring along every path.
» Some paths can contradict each other.
Instead of “putting a new layer of paint”, create a new layer of
triangles and color them as needed.
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Compare: extending a holomorphic function f: U — C along
different paths can produce different values at the same point.
These “branches” of f form the Riemann surface of f.



Coloring monodromy

Definition
Let M be a triangulated surface, /g a triangle in M, and
ai,...,anp vertices of odd degree. The coloring monodromy

m(M~A{ay,...,an},Ag) - Sym(Ag) = Symg

is a group homomorphism that sends every path starting and
ending at A to the corresponding vertex re-coloring of Ay.



Coloring monodromy

Definition
Let M be a triangulated surface, /g a triangle in M, and
ai,...,anp vertices of odd degree. The coloring monodromy

m(M~A{ay,...,an},Ag) - Sym(Ag) = Symg

is a group homomorphism that sends every path starting and
ending at A to the corresponding vertex re-coloring of Ay.

Example
In the 7-vertex triangulation of the 3 :
torus all vertices have degree 6.
The coloring monodromy ! 2
72 = 7ty (M) - Sym, s\ N\ 3 1

permutes the colors in a 3-cycle. ; 5 )



Two odd-degree vertices: second proof

Assume we have a triangulation of S? with only two odd degree
vertices a, b, which are adjacent.



Two odd-degree vertices: second proof

Assume we have a triangulation of S? with only two odd degree
vertices a, b, which are adjacent.
Since 71 (S? \ {a, b}) = Z, the coloring monodromy

m1(S?~ {a,b}) ~ Symy

has a cyclic subgroup of Sym, as its image.



Two odd-degree vertices: second proof

Assume we have a triangulation of S? with only two odd degree
vertices a, b, which are adjacent.
Since 71 (S? \ {a, b}) = Z, the coloring monodromy

m1(S?~ {a,b}) ~ Symy

has a cyclic subgroup of Sym, as its image.

On the other hand, going around a and going around b
permutes the colors by two different transpositions.

Hence the image must be the whole Syms. Contradiction.



References

The coloring monodromy (the “group of projectivities”) was
introduced in

[Joswig’02] Projectivities in simplicial complexes and colorings
of simple polytopes.



References

The coloring monodromy (the “group of projectivities”) was
introduced in

[Joswig’02] Projectivities in simplicial complexes and colorings
of simple polytopes.

The associated branched cover was introduced and studied in

[I.-Joswig’03] Branched coverings, triangulations, and
3-manifolds.

The focus was on triangulations of S® with the edges of odd
degrees forming a knot.



Platonic monodromy
For k = 3,4,5 let P = tetrahedron, octahedron, icosahedron.
Match one of the faces of P with the base triangle of S2.
Rolling P along a closed path produces a symmetry of P.

Rolling around a vertex of degree divisible by k produces the
identity.



Platonic monodromy
For k = 3,4,5 let P = tetrahedron, octahedron, icosahedron.
Match one of the faces of P with the base triangle of S2.
Rolling P along a closed path produces a symmetry of P.

Rolling around a vertex of degree divisible by k produces the
identity.
Hence we have the platonic monodromy

7T1(M\ {a1,...,an},A0) - Sym(P)

where ay, ..., ap are vertices of degrees non-divisible by k.



Two vertices of degree # 0(mod k) cannot be adjacent

Assume we have a triangulation of S? with only two vertices a, b
of degrees non-divisible by k.

The platonic monodromy of this triangulation:

Z 2 (S?~ {a,b}) ~ Sym(P) (+)



Two vertices of degree # 0(mod k) cannot be adjacent

Assume we have a triangulation of S? with only two vertices a, b
of degrees non-divisible by k.

The platonic monodromy of this triangulation:

Z = m (S*~ {a b}) > Sym(P) (+)

Assume that a, b are adjacent and belong to the base triangle.

Then rolling around a and rolling around b produce two
non-commuting symmetries of P.

Hence the image of (x) is non-commutative. Contradiction.



Platonic colorings

Can try to mimic the first proof of the “two odd vertices”
theorem.

Instead of platonic monodromy, consider vertex-colorings in 4,
6, or 12 colors, which are the vertices of the tetrahedron,
octahedron, icosahedron.

k = 3: colorings in 4 colors, where not only adjacent vertices
are colored differently, but also those lying “across an edge”.

k = 4: colorings in colors 1,2, ...,6, where the colors of two
vertices across an edge add up to 7 (the dice rule).

k = 5: colorings in 12 colors, the coloring rule is complicated...



The minimal colored cover
Holomorphic function -~ monodromy ~ Riemann surface S with
a well-defined function and a branched cover S - Cu {oo}

Triangulation = — coloring monodromy + triangulation ¥ that
can be colored, together with a branched cover ¥ — ¥.



The minimal colored cover

Holomorphic function -~ monodromy ~ Riemann surface S with
a well-defined function and a branched cover S - Cu {0}

Triangulation = — coloring monodromy + triangulation ¥ that
can be colored, together with a branched cover ¥ — ¥.

Definition N
The minimal colored cover ¥ of a triangulated surface ¥:
{(A,p) [AeX, p:Vert(A) > {1,2,3}}/ ~

Two adjacent colored triangles are glued along their common
side if their colorings on that side agree.



The minimal colored cover
3

2 3
Definition N
The minimal colored cover ¥ of a triangulated surface ¥:

{(A,p) | AeX, p:Vert(A) - {1,2,3}}/ ~

Two adjacent colored triangles are glued along their common
side if their colorings on that side agree.



The minimal colored cover
3
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Definition N
The minimal colored cover ¥ of a triangulated surface ¥:

{(A,p) | AeX, p:Vert(A) - {1,2,3}}/ ~

Two adjacent colored triangles are glued along their common
side if their colorings on that side agree.

Toom§

The minimality: _
a colored surface that covers X covers also ..
2



The space of germs
The platonic monodromy ~ a branched cover of ¥ made out of
triangles of X “colored” by triangles of a platonic solid P.



The space of germs
The platonic monodromy ~ a branched cover of ¥ made out of
triangles of X “colored” by triangles of a platonic solid P.
Coloring ¥ by P < coloring P by X. The construction is
symmetric and can be applied to any two triangulations.



The space of germs
The platonic monodromy ~ a branched cover of ¥ made out of
triangles of X “colored” by triangles of a platonic solid P.
Coloring X by P < coloring P by ¥. The construction is
symmetric and can be applied to any two triangulations.
Definition
Given two triangulated surfaces ¥, Y.
The space of germs G(X, %) consists of triples

(AA ), Aex, A'eY') ¢:Vert(A) - Vert(A')

Each triple is a triangle; two triangles are glued side-to-side if
they are obtained by “rolling ¥~ over ¥'".



The space of germs
The platonic monodromy ~ a branched cover of ¥ made out of
triangles of X “colored” by triangles of a platonic solid P.
Coloring ¥ by P < coloring P by X. The construction is
symmetric and can be applied to any two triangulations.
Definition
Given two triangulated surfaces ¥, Y.
The space of germs G(X, %) consists of triples

(AA ), Aex, A'eY') ¢:Vert(A) - Vert(A')

Each triple is a triangle; two triangles are glued side-to-side if
they are obtained by “rolling ¥~ over ¥'".

Naturally, G(X,X’) covers ¥ and X'. T
v
The universality property: G(X, )
a surface that covers both ¥ and ¥/, / \
covers also G(X,Y).



And now, geometry: Cone-metrics

Put a metric on a triangulated surface ¥ by viewing every
triangle as an equilateral one with angles equal to 27”
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k = 6: euclidean triangles, all edges have equal lengths.
k < 6: spherical triangles.
k > 6: hyperbolic triangles.
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Put a metric on a triangulated surface ¥ by viewing every
triangle as an equilateral one with angles equal to 27”

k = 6: euclidean triangles, all edges have equal lengths.
k < 6: spherical triangles.
k > 6: hyperbolic triangles.

The result is a (euclidean, spherical, hyperbolic) metric with
cone singularities. (The intrinsic metric “doesn’t see” the edges,
but sees the total angles around the vertices.)



And now, geometry: Cone-metrics

Put a metric on a triangulated surface ¥ by viewing every
triangle as an equilateral one with angles equal to 27”

k = 6: euclidean triangles, all edges have equal lengths.
k < 6: spherical triangles.
k > 6: hyperbolic triangles.

The result is a (euclidean, spherical, hyperbolic) metric with
cone singularities. (The intrinsic metric “doesn’t see” the edges,
but sees the total angles around the vertices.)

Example



One more impossible triangulation

Theorem
There is no triangulation of the sphere with 12 vertices of
degree 5 and one vertex of degree 6.



One more impossible triangulation

Theorem
There is no triangulation of the sphere with 12 vertices of
degree 5 and one vertex of degree 6.

Proof.
Replace every triangle by a spherical one with the angles %’f
Get a spherical metric with only one cone point (of angle ‘ZT”).

But there are no spherical cone-metrics
with a single cone point.



One more impossible triangulation

Theorem
There is no triangulation of the sphere with 12 vertices of
degree 5 and one vertex of degree 6.

Proof.
Replace every triangle by a spherical one with the angles %’f
Get a spherical metric with only one cone point (of angle ‘ZT”).

But there are no spherical cone-metrics
with a single cone point.

O

By contrast, there exist triangulated spheres with 12 vertices of
degree 5 and n vertices of degree 6 for all n€ {0,2,3,4,...}.



The holonomy

Away from the cone points, a cone-surface is locally isometric
to the (euclidean plane, sphere, hyperbolic plane).
This allows to develop the neighborhood of every path.

A closed path can develop to a non-closed one.
The neighborhood of the endpoint is “translated and rotated”
with respect to the neighborhood of the starting point.



The holonomy

Away from the cone points, a cone-surface is locally isometric
to the (euclidean plane, sphere, hyperbolic plane).
This allows to develop the neighborhood of every path.

A closed path can develop to a non-closed one.

The neighborhood of the endpoint is “translated and rotated”
with respect to the neighborhood of the starting point.
Definition

Choose a base point p € M and fix a local isometry of its
neighborhood to (E2,S?, H?). The map

m (M~ Msing) - |SO(E2782’H2)

is called the holonomy of the cone-surface.



The developing map

If the holonomy is trivial, then the cone-surface can be mapped
to (E2,S2,H?) in a locally isometric way.

A cone point of angle # 0(mod 27) always produces non-trivial
holonomy.



The developing map

If the holonomy is trivial, then the cone-surface can be mapped
to (E2,S2,H?) in a locally isometric way.

A cone point of angle # 0(mod 27) always produces non-trivial
holonomy.

Proposition

If M is simply-connected and the angles around all cone points
are multiples of 27, then the holonomy is trivial, so that there is
a map

dev: M — (E2,S2, H?)

which is a local isometry away from the cone points.



The developing map

If the holonomy is trivial, then the cone-surface can be mapped
to (E2,S2,H?) in a locally isometric way.

A cone point of angle # 0(mod 27) always produces non-trivial
holonomy.

Proposition
If M is simply-connected and the angles around all cone points
are multiples of 27, then the holonomy is trivial, so that there is
a map

dev: M — (E2,S2, H?)

which is a local isometry away from the cone points.

In the general case, the developing map goes from the
universal cover of M \ Mging to (E2,S2, H?).



Two exceptional vertices: a geometric proof
Theorem

For any k € {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S? are divisible by k, then the exceptional
vertices are not adjacent.



Two exceptional vertices: a geometric proof

Theorem

For any k € {2,3,4,5}, if degrees of all but two vertices of a
triangulation of S? are divisible by k, then the exceptional
vertices are not adjacent.

Geometric proof.

Replace each triangle by a spherical one with the angles 27”
Cut along the edge joining the exceptional vertices.

Get a disk with cone points whose angles are multiples of 2.
Map it to the sphere by the developing map.

The two sides of the slit go to two different geodesics of length
¢ with the same endpoints. Contradiction. O



Impossible torus triangulations and non-toral graphs

Theorem (Jendrol’, Jukovic '72)

There is no triangulation of the torus with the vertex degrees
5,6,...,6,7.
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There is no triangulation of the torus with the vertex degrees
5,6,...,6,7.

New proof: [I., Kusner, Rote, Springborn, Sullivan ’13].
Make every triangle equilateral euclidean. Obtain a euclidean
metric with two cone-singularities. Study its holonomy.



Impossible torus triangulations and non-toral graphs

Theorem (Jendrol’, Jukovic '72)

There is no triangulation of the torus with the vertex degrees
5,6,...,6,7.

New proof: [I., Kusner, Rote, Springborn, Sullivan ’13].
Make every triangle equilateral euclidean. Obtain a euclidean
metric with two cone-singularities. Study its holonomy.

As a corollary, every graph with these vertex degrees is not

embeddable in the torus.
5
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