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Part I: The Cosmic Web

Artist impression: Nick Risinger / NASA

● Total perspective vortex
● ~10¹¹ stars in our galaxy



  

Part I: The Cosmic Web

Artist impression: Nick Risinger / NASA

● Total perspective vortex
● ~10¹¹ stars in our galaxy
● ~10¹¹ galaxies in the 

visible Universe
● Ordinary matter (stars, 

planets, people) is only 
4% of energy budget

Credit: Lorenzo Comolli



  

Hubble XDF



  



  

The Perseus cluster

Credit: R Jay GaBaniX-Ray – credit: NASA/CXC/Stanford/Zhuravleva et al. (2014)



  

The Perseus-Pisces supercluster



  

v = 4000-5000 km/s

2MRS – Huchra et al. (2012)



  

v = 5000-6000 km/s

2MRS – Huchra et al. (2012)



  

Part 2: Structure formation



  

ORIGAMI/Phase-space

Falck &al. 2012, Neyrinck 2012, Abel &al. 2012, Shandarin &al.2012

courtesy: Steven Rieder



  

Folding in phase-space



  

Part II: Structure formation



Zeldovich Approximation

● Zeldovich 1970
● Doroshkevich, Sunyaev & 

Zeldovich 1976
● Zeldovich & Shandarin 1989



Zeldovich Approximation

Starting position: q = x(0)  → Lagrangian space

Current particle position x(t)  → Eulerian space

Constant particle velocity

Equation of motion:



Caustic formation  Pancakes!→



Pancakes!



Mathematics of folds in phase-space



● René Thom 1972   Catastrophe Theory→
● Arnold 1976   Lagrangian Catastrophes→
● Arnold, Zeldovich & Shandarin 1982
● Arnold 1986, 1992

Zeldovich Approximation
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Lagrangian space Eulerian space
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Eigenvalue landscape



Catastrophe Theory



Catastrophe Theory



Catastrophe Theory



Catastrophe Theory



Part III: Skeleton of the Web



The Adhesion Model

● Add viscosity term to 
Equation of Motion

● Burgers' equation

● Solved by E. Hopf (1950)



Remember Zeldovich Approximation:



Computational Geometry



http://youtu.be/wI12X2zczqI   
(or search: Geometry of Cosmic Web)



Lagrangian/Delaunay   Eulerian/Voronoi↔



Lagrangian/Delaunay   Eulerian/Voronoi↔



Lagrangian/Delaunay   Eulerian/Voronoi↔



Back to our Universe

● Initial conditions from a reconstruction based on 
galaxies in 2MRS (Kitaura 2012, Heß et al. 2014)

● Used CGAL's regular triangulations to find 
structures



  

Microscopium



  

Perseus
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Perseus-Pisces



  

 

  

Large-scale structure in the UniverseLarge-scale structure in the Universe
and the Power of Voidsand the Power of Voids

Johan Hidding (KAI Groningen)
Rien van de Weijgaert (KAI Groningen)

Gert Vegter (JBI Groningen)

Sergei Shandarin (Kansas University)

Francisco Kitaura (AIP/Potsdam)

Steffen Heß (AIP/Potsdam)

Computational geometry in non-Euclidean spaces, Nancy
Wednesday, August 26, 2015

Thank the organisers...



  

 

  

Part I: The Cosmic Web

Artist impression: Nick Risinger / NASA

● Total perspective vortex
● ~10¹¹ stars in our galaxy

Total perspective vortex: Douglas Adams, Hitchhikers guide to the Galaxy – torture 
method: showing people their place in the Universe.

  ``Space'' it says, ``is big. Really big. You just won't believe how vastly, hugely, 
mindbogglingly big it is. I mean, you may think it's a long way down the road to the 
chemist's, but that's just peanuts to space, listen...''

  The Total Perspective Vortex derives its picture of the whole Universe on the   principle 
of extrapolated matter analyses.  Since every piece of matter in the   Universe is in 
some way affected by every other piece of matter in the   Universe, it is in theory 
possible to extrapolate the whole of creation --   every sun, every planet, their orbits, 
their composition and their economic and social history from, say, one small piece of 
fairy cake.

  The man who invented the Total Perspective Vortex did so basically in order to annoy 
his wife.

  Trin Tragula -- for that was his name -- was a dreamer, a thinker, a   speculative 
philosopher or, as his wife would have it, an idiot.  She would nag   him incessantly 
about the utterly inordinate amount of time he spent staring   out into space, or mulling 
over the mechanics of safety pins, or doing   spectrographic analyses of pieces of 
fairy cake.

  ``Have some sense of proportion!'' she would say, sometimes as often as   thirty-eight 
times in a single day.

  And so he built the Total Perspective Vortex, just to show her.  Into one end   he 
plugged the whole of reality as extrapolated from a piece of fairy cake, and   into the 
other end he plugged his wife: so that when he turned it on she saw in   one instant 
the whole infinity of creation and herself in relation to it.

  To Trin Tragula's horror, the shock completely annihilated her brain; but to   his 
satisfaction he realized that he had proved conclusively that  if life is going to exist in a 
Universe of this size, then the one thing it cannot have is a sense of proportion.



  

 

  

Part I: The Cosmic Web

Artist impression: Nick Risinger / NASA

● Total perspective vortex
● ~10¹¹ stars in our galaxy
● ~10¹¹ galaxies in the 

visible Universe

● Ordinary matter (stars, 
planets, people) is only 
4% of energy budget

Credit: Lorenzo Comolli

This is the Andromeda Galaxy, we'll measure 
distances in Mpc (million parsec), that's about 3.26 
mln lightyear or 3x10¹  m.⁹

The distance to Andromeda is ~1 Mpc.

Explaining everything about dark energy or dark 
matter lies outside the scope of this talk: wikipedia 
is your friend.



  

 

  

Hubble XDF

Almost every dust speck is a galaxy. This is only a 
tiny portion of the sky, as we can see in the next 
slide.



  

 

  

The little rectangle shows the extend of the image in 
the previous slide, compared to the area of the full 
moon.



  

 

  

The Perseus cluster

Credit: R Jay GaBaniX-Ray – credit: NASA/CXC/Stanford/Zhuravleva et al. (2014)

This is the Perseus cluster of galaxies, one of the 
larger concentrations of galaxies in the 
neighbourhood, lying at a distance of only 50 Mpc.

Most of the mass in this image is not in stars. It is 
ionized gas that we can only detect in X-ray (here 
shown in purple)

This image spans about 20' on the sky, at that 
distance, ~ 1 Mpc

The Perseus cluster is embedded in an even larger 
structure → 



  

 

  

The Perseus-Pisces supercluster

Here we see that galaxies are not randomly 
distributed but are structured in a filamentary web.

The colours give the recession velocity of each 
galaxy. This is proportional to the distance of the 
galaxy: d = v / H, where H = 70 km/s/Mpc is the 
famous Hubble parameter.

Note the empty regions: voids

Chalenge: can we describe astrophysical objects in 
the context of their environment? 



  

 

  

v = 4000-5000 km/s

2MRS – Huchra et al. (2012)

This is an equatorial map of the full sky distribution of 
galaxies that have a recession velocity between 
4000 and 5000 km/s. This represents a spherical 
shell around home. The contours show the places 
where dust in our own Milky Way (as well as stars) 
makes observation of other galaxies impossible.

 
On the southern hemisphere we see the Centaurus 

Great Wall (actually part of Local Sheet)

On the northern hemisphere the largest structure is 
Perseus-Pisces, even better visible on next slide.



  

 

  

v = 5000-6000 km/s

2MRS – Huchra et al. (2012)

Similar to the previous slide, just one distance bin 
further away.



  

 

  

Part 2: Structure formation

Dark matter!!! We simulate the dynamics of dark 
matter, by having a bunch of particles move in their 
ever evolving joint gravitational potential field. This 
movie shows the process in a 2D toy model.

The universe starts mostly homogeneous. Very small 
fluctuations in the density are then amplified by the 
process of gravitational collapse.

This is just particles: we want to describe web 
structures!



  

 

  

ORIGAMI/Phase-space

Falck &al. 2012, Neyrinck 2012, Abel &al. 2012, Shandarin &al.2012

courtesy: Steven Rieder

Similarities between these images? On the right we 
see a snapshot of a realistic simulation. Note the 
sharp boundaries of the filaments: we can 
recognise caustics here.

These caustics can be understood by representing 
the growth of structure as a sheet that's folding up 
in a higher dimensional space. 



  

 

  

Folding in phase-space

This sheet starts flat: we show here in two 
dimensions the final configuration (Eulerian space) 
and one dimension for the original configuration 
(Lagrangian space). At t=0, tthese configurations 
are identical and the sheet is flat.

As structures start to grow, the sheet deforms and 
folds. We can study the emerging structures by 
studying the folding of the sheet.



  

 

  

Part II: Structure formation

Now we repeat the previous simulation, but fill in the 
gaps using the phase-space sheet.



  

 

Zeldovich Approximation

● Zeldovich 1970
● Doroshkevich, Sunyaev & 

Zeldovich 1976
● Zeldovich & Shandarin 1989

To learn about the rules of phase-space folding we 
use an approximation scheme where things are 
more simple.

Renowned cosmologist Zeldovich, famous for the 
Katouchka and the Hydrogen Bomb, retired to do 
cosmology.

The image shows the earliest rendering of the 
Zeldovich approximation.



  

 

Zeldovich Approximation

Starting position: q = x(0)  → Lagrangian space

Current particle position x(t)  → Eulerian space

Constant particle velocity

Equation of motion:

First order approximation: give particles a kick and let 
them fly. After some time particle trajectories start to 
cross. The approximation loses formal validity. 
Zeldovich genius lies in pushing the approximation 
beyond this point.

The approximation takes the form of a map L: q → x, 
mapping particles from their original position 
(Lagrangian space) to their current position 
(Eulerian space).

This approximation can be arrived at from first 
principles, starting from Newton equations of 
motion on an expanding background: see 
Shandarin & Zeldovich 1989 for a review.

How do we compute the density?



  

 

Caustic formation  Pancakes!→

Sheet described by map from Lagrangian to Eulerian 
coordinates.

The sheet starts flat, then deforms and folds.

Eigenvalues show when matrix becomes singular.

The density is then ρ/<ρ> = 1/(1-tα)(1-tβ)(1-tγ)

This means we have a singularity in the projection 
whenever t = 1/α, t = 1/β or t = 1/γ.

Structure formation starts at maxima of first eigenvalue. 
Level sets of the eigenvalues become the principal 
elements to study the evolution of structures in the 
Zeldovich Approximation. Note that these are the 
eigenvalues of the Hessian of Φ.



Pancakes!

Pancakes are formed! Here we show the level sets of 
the first eigenvalue (in 2D) near a maximum. The 
cyan contour maps to a very thin pancake structure 
in Eulerian space.



Mathematics of folds in phase-space

Around the end of a pancake we can distinguish:
– single-stream region
– caustic: two folds an a cusp
– multi-stream region



  

 

● René Thom 1972   Catastrophe Theory→
● Arnold 1976   Lagrangian Catastrophes→
● Arnold, Zeldovich & Shandarin 1982
● Arnold 1986, 1992

Zeldovich Approximation

The mathematics is that of catastrophe theory, first 
developed by René Thom, later extended to 
Lagrangian manifolds by Vladimir Arnold.

Arnold was aware of Zeldovich' problem with cosmic 
structure formation. They wrote a paper explaining 
catastrophe theory for cosmologists (Arnold, 
Zeldovich & Shandarin 1982) in 2D. Later Arnold 
extended it to 3D.

They still did not see how the singularities would fit in 
a global picture of the formation of the cosmic web. 
Most of all they lacked computer power and 
algorithms to visualise the implication of their work. 



A
3
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Hidding, Shandarin & van de Weygaert 2014

Lagrangian space Eulerian space

Central entities in studying the metamorphoses 
(perestroikas) of the caustic network are the A3 lines 
(greenish cyan). These lines give the blueprint of the 
structures forming.

The bright cyan lines show a selected contour of the first 
eigenvalue, mapped to Eulerian space on the right. The 
cusps (A3 singularity) that we see there correspond to 
the places where the contour intersects the A3 lines.

The same is shown for the second eigenvalue in orange 
tones. How do we find A3 lines?



A
3
-lines

Hidding, Shandarin & van de Weygaert 2014

Lagrangian space Eulerian space



The contours show the level sets of the first eigenvalue. 
The line elements are the corresponding eigenvectors. 
Note that these eigenvectors have no direction. This 
becomes a problem around the D4 singularities. There 
are two types of D4 singularities (pyramid and purse, or 
triple and wedge) around which there is no possible 
consistent vector orientation.

The A3 lines are found where the eigenvector is tangent to 
the level set of the corresponding eigenvalue. We 
computed these lines by finding the zero-set of the 
innerproduct between the gradient of the eigenvalue and 
the eigenvector. We take special care at the lines where 
different vector orientations collide.

At D4 singularities, the two eigenvalues are equal and a A3 
line of one eigenvalue is transformed into an A3 line of 
the other eigenvalue, either 1 to 1, or 3 to 3.



Eigenvalue landscape

The eigenvalues give a landscape. Note the D4 
singularity on the left side of this image. 



Catastrophe Theory

This is the same system from above. I have taken out 
a filament of which we will follow the formation 
history. It contains several of the catastrophes that I 
discussed just a moment ago. The points on this 
line will go cuspy at time D=1/lambda, which I 
plotted here as a function of distance on the line. 
Let's see how this filaments looks in Eulerian 
space.



  

 

Catastrophe Theory

We look at the first image corresponding to the highest 
purple line in the bottom graph. Along the selected 
filament, there are two A3+ singularities that signify the 
birth of a pancake. We have marked the A3 singularity at 
position 450 and show where it appears in Eulerian 
space.



  

 

Catastrophe Theory

Now we look at the second line, just after the A3- near 
position 600. The A3- singularity is a saddle point of the 
eigenvalue and signifies the merger of two pancakes.



  

 

Catastrophe Theory

Finally the filament merges and more complex structures 
start to appear.



  

 

Part III: Skeleton of the Web

We can also study the skeleton of the multi-stream regions. 
Certainly when structures are more evolved, the 
Zeldovich approximation is no longer valid. The adhesion 
model gives a more accurate description. However, the 
approaches should be considered complimentary. The 
Zeldovich approximation tells us what the multi-stream 
patterns look like, just after the first structures form. The 
adhesion model tells us how the network evolves in a 
natural way, but we lose a lot of information on the 
internal flow of structures and therefore their genesis.

Note that the adhesion formalism gives us the true skeleton 
of the Zeldovich structures. The topology of the single-
stream regions remains the same.



  

 

The Adhesion Model

● Add viscosity term to 
Equation of Motion

● Burgers' equation

● Solved by E. Hopf (1950)

We start from the Zeldovich equation of motion and 
add a viscosity term. We take the solution where 
ν→0.



Remember Zeldovich Approximation:

Now the solution is given by the convex hull of the 
(modified) potential φ = q²/2 – tΦ. This can be 
understood from the same expression of the 
Zeldovich Approximation (see expression at the 
bottom). Where we have multi-stream regions, the 
Lagrangian map L:q→x is not monotonic. To make 
it monotonic we take the convex hull of the 
generating potential. The resulting shocks in 
adhesion are the Maxwell strata of the multi-stream 
regions.

All the singularities that we identified in the Zeldovich 
Approximation are still relevant in the Adhesion 
model.



  

 

Computational Geometry

We can now use CGAL to compute the structures 
resulting from the potential. We use the regular 
triangulation, weighting a (quasi-)continuous 
ensemble of points as w(q) = 2tΦ(q).



  

 

http://youtu.be/wI12X2zczqI   
(or search: Geometry of Cosmic Web)

Please look at the movie!



  

 

Lagrangian/Delaunay   Eulerian/Voronoi↔

We applied the regular triangulation to a grid of 
points, weighted with a randomized value. The 
voids have more power than the surrounding 
matter. These points remain part of the 
triangulation. On the other hand, points that 
collapse into structures become reduntant, adding 
mass to the structures they represent.

Here we show filaments in orange, their line density 
scales with the length of the simplex edges.

The nodes are shown in green, their mass given by 
the area of the delaunay cells. 



  

 

Lagrangian/Delaunay   Eulerian/Voronoi↔

As time flies, the voids expand in Eulerian space 
(Voronoi), while losing matter, shrinking in 
Largrangian space (Delaunay).



  

 

Lagrangian/Delaunay   Eulerian/Voronoi↔

Clusters grow more massive as more vertices become 
redundant.



  

 

Back to our Universe

● Initial conditions from a reconstruction based on 
galaxies in 2MRS (Kitaura 2012, Heß et al. 2014)

● Used CGAL's regular triangulations to find 
structures

The next pictures and movies are all visualisations of 
power-diagrams. We used initial condition provided 
by Heß and Kitaura. They produced initial 
conditions tailored to produce the structures that we 
observe in the nearby universe today.



  

 

  

Microscopium

Microscopium is the name of a very very large void 
right on our doorstep.



  

 

  

Perseus
Pisces

Back to the Perseus-Pisces structure. We used the 
Power diagram to image the strucutres.



  

 

  

Perseus
Pisces

This is a top-down view of the same structure, taking 
a slice along the line Perseus-cluster/A262. The 
filaments, here in a flattened configuration, are in 
the process of merging to form a bigger filament.



  

 

  

Perseus-Pisces

3D movies galore!
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