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Frameworks

• Graph G = (V,E); edge lengths ℓ(ij); ambient 
dimension d 

• Length eqns. 

• The p’s are a “placement” of G / realization of (G, ℓ)

||pi - pj||2 = ℓ(ij)2 



Rigidity, flexibility

Rigidity question: which frameworks are rigid?

Rigid Flexible



Frameworks

• Deformation space = local solutions to 

• “mod rigid motions” 

• Degrees of freedom  = dim (deformation space)

||pi - pj||2 = ℓ(ij)2 



Quiz!



Quiz!



Quiz!



Combinatorial rigidity

Combinatorial rigidity question: 
which graphs are (generically) rigid?

Deformation space is a finite-dimensional  
algebraic set, well-def’d dimension



• Each point contributes 2 variables 

• Each edge contributes 1 equation 

• Always 3 rigid motions 

• Don’t waste any

Maxwell counting

m’ ≤ 2 n’ – 3
eqns. vars. “trivial”



• Theorem (Laman '70): Generically, in d = 2, this 
implies independence of length equations.  
(Minimal rigidity if m = 2n – 3.)

Geometry to combinatorics
m’ ≤ 2 n’ – 3



• Generic frameworks can be general enough 

• Can check Laman “2n – 3” in O(n2) time 

• simple “pebble game” algorithms [Hendrickson-
Jacobs, Berg-Jordán, Lee-Streinu] 

• no numerical problems 

• Useful to know if your problem is non-generic

Why combinatorial rigidity?



Open questions

• Which graphs are rigid in d ≥ 3? 

 Naïve Maxwell counting fails. 

• Which infinite and/or symmetric frameworks are 
rigid? 

• (Some answers later…) 

• What other geometric constraints can be analyzed 
this way?



Genericity vs. universality

• The rigidity question for all frameworks is universal 

• implies NP-hardness straightforwardly 

• configuration spaces can be homotopy eqv. to 
any semi-algebraic set 

• On the other hand, the hard instances are a proper 
algebraic subset of instances 

• the “non-generic” ones

[Kempe; Mnëv 1988]



• Aluminosilicates with many 
industrial applications 

• Model as corner-sharing 
tetrahedra 

• Few types known in nature 

• Would like more 

• Flexibility is important for 
function 

• Want to know if a 
combinatorial type is flexible

Application: hypothetical zeolites

[from Foster-Treacy]



• Graph is infinite 

• how to compute with it 

• Structure is symmetric 

• any symmetric structure 
satisfies lots of extra 
equations 

• very non-generic looking 

• Want Maxwell-Laman type 
results

Application: hypothetical zeolites

[from Foster-Treacy]



• A periodic framework (G, ℓ, Γ) is an infinite 
framework with 

•   Γ < Aut(G) 

• ℓ(γ(ij)) = ℓ(ij) 

• A realization G(p,Λ) is a realization periodic with 
respect to a lattice of translations Λ, which realizes Γ 

• Motions preserve the Γ-symmetry

Periodic frameworks

Γ free abelian, 
rank d

finite  
quotient

[Borcea-Streinu ‘10]



• Can treat configuration spaces with the same 
algebraic tools used for finite frameworks 

• The combinatorial type of a periodic framework is 
finite 

• Preserves duality of static and kinematic 
infinitesimal rigidity

Why periodic frameworks?
[Borcea-Streinu ‘10]



[Whiteley]







1 vertex orbit 
2 edge orbits



Not allowed

Not one vertex orbit!



Colored graphs

(0,0) (0,0)

(0,0)

(1,-1)(0,1)

(-1,0)



• Each vertex orbit determined by one representative 

• total 2n  variables from there 

• Lattice representation is a 2 × 2 matrix 

• 4 more variables 

• For subgraphs, we will have to distinguish how 
much of the symmetry group they “see”

Counting for periodic frameworks



(0,0) (0,0)

(0,0)

(1,-1)(0,1)

(-1,0)

m ≤ 2n – 3



(0,0) (0,0)

(0,0)

(1,-1)(0,1)

(-1,0)

m ≤ 2n – 3 + 2



(0,0) (0,0)

(0,0)

(1,-1)(0,1)

(-1,0)

m ≤ 2n – 3 + 4



• Theorem (Malestein-T): For dimension 2 

  

characterizes generic independence of length 
equations. 

• Minimal rigidity if m = 2n + 1 

• Generic here is choice of vertex orbits 

• Can also check combinatorially

Generic periodic rigidity

m’ ≤ 2(n + k) - 3 - 2(c - 1)Z2 rank
connected 

comps.



• Fixed-lattice (2d) [Ross ’10] 

• Fixed-area unit cell (2d) [Malestein-T] 

• “Uncolored” quotient graph (all d) [Borcea-Streinu 
’10] 

• fixed-lattice [Whiteley ’88]

Periodic rigidity variants



• Maxwell heuristic 

• Symmetry group Γ with representation Φ 

• Γ’ is a subgroup associated with a subgraph 

• These are all well-defined, depend only on the 
symmetric lift

Forced-symmetric counting

m’ ≤ 2 n’ – 3
eqns. vars. “trivial”

m’ ≤ 2 n’ + teichΓ(Γ’) – centΓ(Γ’)
eqns. vars. “subgroup flex.” “sym.-preserving motions”



• Heuristic is sufficient in 2d for 

• Finite order rotations [Malestein-T ’11] 

• One reflection [Malestein-T ‘12] 

• Odd dihedral groups [Jordán et al. ‘12] 

• Orientation-preserving wallpaper groups 
[Malestein-T ‘12]

Other groups



• Periodic body-bar frameworks [Borcea-Streinu-
Tanigawa ‘12] 

• Forced-symmetric scene analysis [Tanigawa ‘12] 

• Generalizes the families of graphs seen here 

• More groups, more dimensions

Further developments



Allowed!



• Let (G, p, L) be a realization of (G,ℓ, Γ)  

• (G, p, L) is (periodically) ultrarigid if 

• it is rigid  

• for any (finite-index) sub-lattice Λ < Γ, (G, p, L) is a 
rigid realization of (G, ℓ, Λ)  

• Related concept: “ultra 1-d.o.f.” (in 2d) 

• e.g, 4-regular lattices

Ultrarigidity
[Borcea]



• Naive “infinite frameworks” harder to treat with 
algebraic-combinatorial ideas [Owen-Power] 

• Ultrarigidity is in between infinite frameworks and 
forced periodicity 

• Better hope for combinatorial characterizations

Why ultrarigidity?



• Generic rigidity characterized by the rank of one 
matrix (rigidity/compatibility/… matrix) 

• here there is an infinite family of matrices 

• Not completely clear finite ultrarigidity is a generic 
property 

• Some evidence towards “no” 

• We don’t know a priori what failures of ultrarigidity look 
like

Challenges



Algebraic characterizationAlgebraic characterization
• A realization (G, p, L) is infinitesimally ultrarigid if and 

only if: 

• It is infinitesimally periodically rigid 

• The matrix with ijth row, ij ∈ E(G,φ) 

!

!

      has rank dn for all ω ≠ 1

(….. – dij …….. dij ⨂{γij-1,ω} ….)
i jedge direction  

vector

comp. wise 
mult

{δ,ω} := (ζ1δ1, …,ζd
δd), ζi root of unity 

[Connelly-Shen-Smith’14 + Power ’13]



• Failures of ultrarigidty fix the lattice 

• [Connelly-Shen-Smith]: Nice geometric argument 

• Direct derivation: Representation theory 

• Can check ultrarigidity in finite time [Malestein-T] 

• find a priori bound on order of ζ’s

Consequences



Infinitesimal vs. finite

(0, a)

(0, b)

(0, c)(0, d)
(0, e)

Figure 3: Periodic realization of the graph in Figure 1.(b).

The paper [5] provides some evidence that the answer to the latter question is yes. In [5], it
is shown that periodic pointed pseudo-triangulations are f.a. infinitesimally ultrarigid and adding
a single edge orbit produces an infinitesimally ultrarigid framework. Since the property of being
a periodic pointed pseudo-triangulation is preserved under small perturbations, this produces
open sets of ultrarigid frameworks.

The results of [5], [14] and this paper lead to another natural question. In [14], it is shown
that a planar Laman graph necessarily has a realization as a pointed pseudo-triangulation. As
was shown in [5], m = 2n for a periodic pointed pseudo-triangulation, and so the frameworks
must satisfy the conditions of Theorem 7.

Question 2. If a colored graph satisfies the conditions of Theorem 7 and admits a planar periodic
realization, does it admit a realization as a periodic pointed pseudo-triangulation?

Our combinatorial theorems 6 and 7 characterize generic infinitesimal ultrarigidity when the
number of edges is the minimal possible. However, infinitesimal ultrarigidity is not obviously
matroidal (and almost certainly not) on colored graphs. Moreover, for each torsion point 1 6=
! 2 C2, we only understand generically the rank of pr!(ŜG,p,L) when we assume additional
combinatorial information about (G,�), i.e. that it is colored-Laman-sparse. Therefore, the
following closely related problems remain open:

Problem 2. In dimension 2 (or higher), give a complete combinatorial characterization of the linear
matroid given by the generic rank of pr!(ŜG,p,L).

Problem 3. Characterize, without any assumption on the number of edges, the generically infinites-
imally ultrarigid graphs.

31

Never infinitesimal f.a. ultrarigid, 
but always finitely f.a. rigid



• (G,γ) a colored graph with Γ (≅Zd) colors 

• ψ : Γ ⟶ Δ, epimorphism to a finite cyclic Δ 

• “Ultra Maxwell Count” for (G, ψ (γ)) 

for all ψ. 

• Finitely many suffice. Sufficient in 2d if (G,γ) is 
independent as a periodic framework

Counting

m’ ≤ d n’ – d T(G, ψ (γ))

# c.c.’s w/ 
Δ rank > 0



• For m = 2n + 1, have a combinatorial algorithm 
polynomial in m (but not γ) for generic infinitesimal 
periodic ultra rigidity 

• Useful for “small” colors 

• For m = 2n, have a polynomial time algorithm for fixed-
area periodic ultrarigidity 

• Via some combinatorial equivalences 

• Uses the pebble game, still only O(n4)

Algorithms and combinatorics



• Finite vs. infinitesimal ultra-rigidity 

• “Irrational” points on the RUMS 

• very important in “Mechanical Insulators” theory 

• Faster algorithms

Questions

[Kane-Lubensky ‘13]



Kiitos!


