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Intrinsic simplices on Riemannian manifolds

Motivation: Generic triangulation
criteria

intrinsic setting

explicit quality requirements

Arbitrary dimension
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Modeling simplices: quality

Non-degeneracy by quality requirements depending on curvature manifold

SOCG: Model simplices on Euclidean space
I To tangent space via exponential map
I Almost flat

Here: Model simplices using space of constant curvature
I Map to space of constant curvature
I Curvature is (locally) nearly constant
I Towards adaptive sampling

New quality measures for spaces of constant curvature
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Intrinsic simplices and
non-degeneracy
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Convex hulls

Natural way to “fill in” a simplex?

Convex hull bad:
-Generally convex hull three points not two di-
mensional
-Stronger conjectured not closed

Berger 2001 (panoramic overview):
‘It appears as if there is no canonical method to
fill up a triangle, or more general simplex, in a
generic Riemannian manifold. But this is not true
-the problem is solved by the notion of center of
mass, modeled on Euclidean geometry.’
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Centres of mass in Euclidean space

Weighted average of points ∑
µivi

assume
∑
µi = 1.

Generalizes to ∫
p dµ(p)

is where the minimum of

PRn(x) =
1

2

∫
‖x− p‖2dµ(p),

is attained
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Riemannian centres of mass

Centre of mass

Eλ(x) =
1

2

∑
i

λidM (x, vi)
2

barycentric coordinates: λi ≥ 0,
∑
λi = 1

Bσj :∆j →M

λ 7→ argmin
x∈Bρ

Eλ(x)

∆j the standard Euclidean j-simplex, σM image

Point where minimum Eλ(x) is attained is characterized by∑
λi exp−1

x (vi) = 0. (generalization of
∑
λi(vi − x) = 0)
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Smooth map
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Exponential map

Notation

vi(x) = exp−1
x (vi),

σ(x) = {v0(x), . . . , vj(x)}
⊂ TxM ,
injectivity radius ιM

vi(x) = exp−1
x (vi) is smooth
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Non-degeneracy; a consequence of linear independence

Definition

A Riemannian simplex σM is non-degenerate if σM is diffeomorphic to the
standard simplex ∆n

Lemma (Consequences of linear independence)

If tangents to geodesics connecting any n (in neighbourhood) to some
subset v0, . . . , vj−1, vj+1, . . . vn (may depend on x) are linearly
independent then

the map ∆n → σM is bijective

The inverse of ∆n → σM is smooth
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∆n → σM is bijective

Proof by contradiction∑
λi exp−1

x (vi) =
∑

λ̃i exp−1
x (vi) =

∑
λ̃ivi(x) = 0

with
∑
λi =

∑
λ̃i = 1. Because v0(x), . . . , v̂j(x), . . . , vn(x) linearly

independent λj 6= 0, λ̃j 6= 0. So

λ0

λj
v0(x) + . . .+

λj−1

λj
vj−1(x) +

λj+1

λj
vj+1(x) + . . .+

λn
λj
vn(x) =

λ̃0

λ̃j
v0(x) + . . .+

λ̃j−1

λ̃j
vj−1(x) +

λ̃j+1

λ̃j
vj+1(x) + . . .+

λ̃n

λ̃j
vn(x).

Contradiction
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Inverse of ∆n → σM is smooth

Proof ∑
λi exp−1

x (vi) =
∑

λivi(x) = 0,

λj 6= 0 because if λj = 0 then∑
i 6=j

λivi(x) = 0,

contradicting linear independence. So

(v0(x), . . . , vj−1(x), vj+1(x), . . . vn(x))−1vj(x) =

(
λi
λj

)
.

Dyer, Vegter, Wintraecken (JBI) Intrinsic simplices August 2015 13 / 48



Linear independence 2D

In two dimensions linear indepen-
dence easy (Rustamov 2010)

If exp−1
x (v0) = v0(x), v1(x),

v2(x) do not span TxM
then they are co-linear.

Equivalent to v0, v1 and v2

lying on geodesic.
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Friedland’s bounds

Stability of determinants

|det(A+ E)− det(A)| ≤ nmax{‖A‖p, ‖A+ E‖p}n−1‖E‖p

with A and E, n× n-matrices
‖ · ‖p p-norm on matrices 1 ≤ p ≤ ∞:

‖A‖p = max
x∈Rn

|Ax|p
|x|p

,

p-norm on vectors:

|w|p = ((w1)p + . . .+ (wn)p)1/p
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Topogonov comparison theorem
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Triangles and cosine rules

A

C

B
b

c

a

α

β

γ

Cosine rules:

cos
a

k
= cos

b

k
cos

c

k
+ sin

b

k
sin

c

k
cosα,

in a space H(1/k2) of sectional curvature
1/k2

a2 = b2 + c2 − 2bc cosα

in Euclidean space Rn

cosh
a

k
= cosh

b

k
cosh

c

k
− sinh

b

k
sinh

c

k
cosα,

in a space H(−1/k2) of sectional curvature
−1/k2
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Geodesic triangles

Geodesic triangle T : Three minimizing geodesics connecting three points
on a arbitrary manifold (no interior)

A

C

B
b

c

a

Alexandrov triangle: A geodesic triangle with same edge lengths on space
of constant curvature H(Λ∗).
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Hinges

Hinge: Two minimizing geodesics connecting three points and enclosed
angle on a arbitrary manifold

A

C

B
b

c
α

Rauch hinge: A hinge with the same edge lengths and enclosed angle on a
space of constant curvature H(Λ∗).
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Topogonov comparison theorem

Manifold M , sectional curvatures Λ− ≤ K ≤ Λ+.

Given: Geodesic triangle T on M then exist TΛ− , TΛ+ on H(Λ−), H(Λ+)
and

αΛ− ≤ α ≤ αΛ+ ,

Given: Hinge on M then exist Rauch hinges on H(Λ−), H(Λ+) and the
length of the closing geodesics satisfy

cΛ− ≥ c ≥ cΛ+ .
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Non-degeneracy criteria for
simplices modeled on simplices in

Euclidean space
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Setting

Setting:

Manifold M with bounded curvature |K| ≤ Λ.

Points {v0, . . . , vn} in a small ball in M : vertices.

Choose vertex vr.

σE(vr) convex hull of the exp−1
vr (vi) = vi(vr).

Goal:

Give conditions on σE(vr) that imply non-degeneracy
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Step 1

We know all the geodesics emanating from vr. Topogonov for Hinges
bounds the length of blue geodesics in the middle by those on the side.

Dyer, Vegter, Wintraecken (JBI) Intrinsic simplices August 2015 23 / 48



Step 2

In small neighbourhood the lengths of geodesics on the left and right are
close to the lengths in the tangent space (via exp−1

H(Λ∗))

This implies that the same holds for M in the middle.
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Step 2

In small neighbourhood the lengths of geodesics on the left and right are
close to the lengths in the tangent space (via exp−1

H(Λ∗))

This implies that the same holds for M in the middle.
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Step 3

Use the Toponogov comparison theorem for geodesic triangles to conclude
that the angles (and inner product) are close to those in the tangent space
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Step 4

Gram matrix (in n directions)

(〈exp−1
x vi, exp−1

x vl〉)i,l 6=j = (〈vi(x), vl(x)〉)i,l 6=j

is close to

(〈vi(vr)− x(vr), vl(vr)− x(vr)〉)i,l 6=j

Determinants:

Friedlands result on stability of determinants gives that determinants
are close

determinants zero iff n tangent vectors linearly independent

determinants are like volume squared, gives a quality measure
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Step 5

(before) linear independence implies diffeomorphism

(here) If normalized volume simplex is large enough then linear
independent

Gives non-degeneracy criteria
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Non-degeneracy criteria for
simplices modeled on simplices in
spaces of constant curvature
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Setting

Setting:

Manifold M with bounded curvature Λ− ≤ K ≤ Λ+, with 0 < Λ− or
Λ+ < 0.

Points {v0, . . . , vn} in a small ball in M : vertices.

Choose vertex vr.

Model on σH(Λmid)(vr) convex hull of
expH(Λmid) ◦ exp−1

vr (vi) = vi(vr), with Λmid ∈ [Λ−,Λ+].
If Λ−,Λ+ > 0

Λmid =
1

2
(Λ− + Λ+).

Goal:

Give conditions on σH(Λmid)(vr) that imply non-degeneracy
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Step 1

We know all the geodesics emanating from vr. Topogonov for Hinges
bounds the length of blue geodesics in the middle by those on the side.
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Step 2

In small neighbourhood the lengths of geodesics on the left and right are
close to the lengths on H(Λmid) (via expH(Λmid) ◦ exp−1

vr,M
).

This implies that the same holds for M in the middle.
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Step 3

Use the Toponogov comparison theorem for geodesic triangles to conclude
that the angles (and inner product) are close to those on H(Λmid)

Dyer, Vegter, Wintraecken (JBI) Intrinsic simplices August 2015 33 / 48



Step 3 (continued)

These inner products are:

1

Λmid
sin (

√
ΛmiddM (x, vi)) sin (

√
ΛmiddM (x, vj)) cos θij,M (elliptic)

1

Λmid
sinh (

√
ΛmiddM (x, vi)) sinh (

√
ΛmiddM (x, vj)) cos θij,M (hyperbolic)

from the cosine rules:

cos
a

k
= cos

b

k
cos

c

k
+ sin

b

k
sin

c

k
cosα,

a2 = b2 + c2 − 2bc cosα

cosh
a

k
= cosh

b

k
cosh

c

k
− sinh

b

k
sinh

c

k
cosα
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Step 4

Gram matrix for n directions (elliptic case, hyperbolic similar)(
1

Λmid
sin(

√
ΛmiddM (x, vi)) sin(

√
ΛmiddM (x, vj)) cos θij,M

)
i,l 6=j

is close to(
1

Λmid
sin
(√

Λmid dH(Λmid)(x(vr), vi(vr))
)

sin
(√

ΛmiddH(Λmid)(x(vr), vl(vr))
)

cos θil,H(Λmid)

)
i,l 6=j

with x(w) = expH(Λmid) ◦ exp−1
w x

Determinants:

Friedlands result on stability of determinants

determinants zero iff n tangent vectors linearly independent

determinants gives a new quality measure
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Step 5

(before) linear independence implies diffeomorphism

(here) If quality is large enough then linear independent

Gives non-degeneracy criteria
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Quality measures for simplices in
spaces of constant curvature
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Barycentre and division of volume

v1

v3

v2
barycentre

The barycentre is the point where the maximum subvolume is minimized:

QRn(σ) = min
y∈Rn

max
j

{
det ((y − vi) · (y − vl))i,l 6=j

}
=

(
n · volume(σ)

n+ 1

)2

Dyer, Vegter, Wintraecken (JBI) Intrinsic simplices August 2015 38 / 48



Quality for positive curvature spaces

Replacement for inner product

1

Λ
sin
√

ΛdM (x, vi) sin
√

ΛdM (x, vj) cos θij,M

New quality measure

QH(Λ)(σH(Λ)(vr))

= min
y∈H(Λ)

max
j

{
det

(
1

Λ
sin
(√

Λ dH(Λ)(y, vi(vr))
)
·

sin
(√

ΛdH(Λ)(y, vl(vr))
)

cos θil

)
i,l 6=j

}
,
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Geometric interpretation for positive curvature

0

x

vi

1√
Λ

1√
Λ

sin(
√

Λd(x, vi))

d(x, vi)

For standard embedded sphere

1

Λ
sin(
√

Λd(x, vi)) sin(
√

Λd(x, vj))

cos θij,M

is inner product after projection onto
the tangent space.

QH(Λ) is of the form volume squared
in tangent space via projection.
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Quality for spaces of negative curvature

QH(Λ) = min
x∈N

max
j

{
det

(
1

|Λ|
sinh

(√
|Λ|dHn(ΛH

mid)(x, vi(vr))
)

sinh
(√
|Λ|dHn(Λ)(x, vl(vr))

)
cos θil

)
i,l 6=j

}

Similar geometric interpretation using the hyperboloid model in Minkowski
space.

Both inner products have the right Euclidean limit

lim
Λ→0

1

Λ
sin(
√

Λb) sin(
√

Λc) cos θ = bc cos θ

lim
Λ→0

1

Λ
sinh(

√
Λb) sinh(

√
Λc) cos θ = bc cos θ
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My problems: 1. Quality measures on space form with
positive curvature

Is our quality measure the natural one?
Easier ones can be imagined, but must satisfy:

Small triangles with large volume compared to edge length are good

Large triangles with vertices near the equator are bad, even if the
vertices are evenly spaced

To put it differently, quality of an equilateral triangle should decrease with
size.

Dyer, Vegter, Wintraecken (JBI) Intrinsic simplices August 2015 42 / 48



My problems: 2. Quality measures on space form with
negative curvature

Is our quality measure the natural one?

We use the Minkowski model, is this the most natural way to look at
things?
Expressions bounds (as we shall see) are complicated so maybe not.

Is there a natural scaling requirement? In the elliptic case the quality
decreases with size, in Euclidean it stays the same, does it increase or
decrease here?

To put it differently, should quality of an equilateral triangle increase or
decrease with size? We do not know.
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Results
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Non-degeneracy result

Theorem (Non-degeneracy criteria for positive curvature)

Let M manifold with 0 < Λ− ≤ K ≤ Λ+. v0, . . . , vn vertices on M within
a geodesic ball of radius 1

2D̃ with centre vr, where D̃ ≤ 1/(2
√

Λ+).
Simplex is non-degenerate if

QH(Λmid)(σH(Λmid)(vr))

(2D̃)2n
≥ n |Λ− − Λ+| D̃2

σH(Λmid)(vr) the simplex on H(Λmid) with vertices vi(vr) defined by

vi(vr) = expH(Λmid) ◦ exp−1
vr,M

(vi) and

Λmid =
1

2
(Λ− + Λ+).
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Theorem (Non-degeneracy criteria for negative curvature)

Let M be a manifold with Λ− ≤ K ≤ Λ+ < 0. Given vertices v0, . . . , vn
on M within geodesic ball of radius 1

2D̃ with centre vr. Simplex is
non-degenerate if

|Λmid|nQH(Λmid)(σH(Λmid)(vr)) > n(sinh
√
|Λ−|D̃)2(n−1)

·

(
2 + 2 cosh

(√
|Λ−|D̃

)
+ |Λ−|2 cosh2

(√
|Λ−|D̃

) 11D̃4

4!

)

·
∣∣∣|Λ−| cosh2

√
|Λ−|D̃ − |Λ+| cosh2

√
|Λ+|D̃

∣∣∣ |Λmid|
11D̃4

2 · 4!

σH(Λmid)(vr) simplex on H(Λmid), vertices expH(Λmid) ◦ exp−1
vr,M

(vi) and∣∣∣|Λmid| cosh2
√

ΛmidD̃ − |Λ−| cosh2
√
|Λ−|D̃

∣∣∣
=
∣∣∣|Λmid| cosh2

√
ΛmidD̃ − |Λ+| cosh2

√
|Λ+|D̃

∣∣∣ .
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Comment on the quality bound

The quality bound looks awful∣∣∣|Λ−| cosh2
√
|Λ−|D̃ − |Λ+| cosh2

√
|Λ+|D̃

∣∣∣
but it is roughly speaking proportional to |Λ− − Λ+|. Implies that the
bounds on the quality go to zero as |Λ− − Λ+| tends to zero.
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Questions?
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