Algorithms for embedded graphs

Sergio Cabello University of Ljubljana Slovenia

(based on work by/with several people)

Nancy 2015

Sergio Cabello Embedded graphs

Outline

- Topology and graphs on surfaces
- Algorithmic problems in embedded graphs
- Sample of techniques

Surfaces

A (topological) surface is something that, locally, looks like \mathbb{R}^2

We restrict ourselves to compact, orientable surfaces: each is homeomorphic to a sphere with g handles attached to it We say the genus of the surface is g

Surfaces – Polygonal schema

A double torus (g = 2) using a polygonal schema

Curves on Surfaces

A closed curve is a continuous mapping $\alpha : \mathbb{S}^1 \to \text{surface}$

It is *simple* if it has no self-intersections (injective)

Topological Concepts

- $\blacktriangleright \alpha, \ \beta \ {\rm closed} \ {\rm curves}$
- $\blacktriangleright \ \alpha, \ \beta$ are homotopic if α can be continuously deformed to β
- deformation within the surface

Topological Concepts

- $\blacktriangleright \alpha, \ \beta \ {\rm closed} \ {\rm curves}$
- $\blacktriangleright \ \alpha, \ \beta$ are homotopic if α can be continuously deformed to β
- deformation within the surface

Topological Concepts

- $\blacktriangleright \alpha, \ \beta \ {\rm closed} \ {\rm curves}$
- $\blacktriangleright \ \alpha, \ \beta$ are homotopic if α can be continuously deformed to β
- deformation within the surface

Contractible

- α simple closed curve
- α is *contractible* if it is homotopic to a constant mapping

Theorem: α contractible and simple $\Rightarrow \alpha$ bounds a disk

Separating

- α closed curve
- α is *separating* if removing its image disconnects the surface
- ▶ related to Z₂-homology

Theorem: Non-separating \Rightarrow Non-contractible

Sergio Cabello

Embedded Graphs

G is embedded in a surface if:

- each vertex $u \in V(G)$ assigned to a distinct point u
- each edge uv assigned to a simple curve connecting u to v
- interior of edges disjoint from other edges and V(G)
- each face is a topological disk (2-cell embedding)

Embedded Graphs – Polygonal Schema

Representations of Embedded Graphs

- rotation system: for each vertex, the circular ordering of its outgoing edges as DCL.
- coordinate-less DCEL:
 - halfedges
 - vertices
 - faces
 - adjacency relations between them
- flags or gem representation

▶ ...

The surface is implicit in the representation of the graph.

Surgery should be doable efficiently.

Embeddable vs Embedded

- planar graph: can be embedded in the plane
- plane graph: a particular embedding
- an embedding can be obtained from the abstract planar graph in linear time

Embeddable vs Embedded

- planar graph: can be embedded in the plane
- plane graph: a particular embedding
- an embedding can be obtained from the abstract planar graph in linear time
- ▶ *g*-graph: can be embedded in *g*-surface
- embedded g-graph: a particular embedding
- ► NP-complete: is G a g-graph? [Thomassen '89]
- The problem is fpt wrt genus g

- [Mohar '99]
- "simpler" algorithm by Kawarabayahi, Mohar and Reed 2008
- 2^{*O*(*g*)}*n* time
- errors in embedding algorithms [Myrvold and Kocay 2011]

Outline

- Topology and graphs on surfaces
- Algorithmic problems in embedded graphs
- Sample of techniques

Our scenario

Input: an embedded graph G with (abstract) edge-lengths Cycles/closed walks in G are closed curves in the surface

Actors: algorithms, topology, and the metric d_G $n \equiv$ complexity of the input graph: |E(G)|The case $g \ll n$ or even g = O(1) is relevant

Algorithmic problems

Input: embedded graph with edge-lengths

- find a shortest non-contractible/non-separating cycle
- find a shortest contractible cycle/walk
- \blacktriangleright given $\alpha,$ find the shortest cycle homotopic/homologous to α
- find a cycle shortest in its homotopy/homology class
- ▶ max *s*-*t* flow
- find a shortest planarizing set
- build a 'good' representation of distances in embedded graphs
- find all replacement paths
- approximate optimum TSP

Shortest non-contractible cycle

- most popular and traditional problem
- subroutine for other problems
 - crossing number: does a graph have crossing number $\leq k$?
 - approximation algorithms for TSP in embedded graphs or near-planar graphs [Demaine, Hajiaghayi, Mohar '07]
 - numerical analysis for Hodge decomposition
- overlap with analysis of meshes arising from scanned data
 - removal of topological noise [Wood et al. '04]
 - identification of handles and tunnels [Dey et al. '08]

Find a shortest non-contractible cycle

All them also work for non-separating, but no metatheorem. Directed version, combinatorial bounds, etc.

Shortest contractible curve

- contractible closed walk
 - does not need to be a circuit
 - not difficult to solve in polynomial time
 - O(n log n) [Cabello, DeVos, Erickson, Mohar '10]

using [Lacki, Sankowski '11]

- contractible cycle without repeated vertices
 - *O*(*n*² log *n*) [Cabello '10]
 - shortest cycle in planar graph with forbidden pairs

Separating cycles

- does it exists any separating cycle without repeated vertices?
 - NP-hard [Cabello, Colin de Verdière, and Lazarus '10]
 - reduction from Hamiltonian cycle in 3-regular planar graphs

Summary of some results (up to date?)

	Cycle	Closed walk
Contractible	$O(n^2 \log n)$	$O(n \log n)$
Separating	NP-hard	???, FPT wrt g
Non-contractible	$O(\min\{g^2, n\}n\log n)$	\leftarrow same
Non-separating	$O(\min\{g^2, n\}n\log n)$	\leftarrow same
Tight	↑ same	$O(n \log n)$
Splitting	NP-hard	NP-hard, FPT wrt g
Prescribed homotopy	???	nice polynomial
Prescribed homology	NP-hard, FPT wrt g	\leftarrow same
	1	1

pergio (abello		~ .	
	Argio	(abe	
	JELPIU.	v.aue	1102

Outline

- Topology and graphs on surfaces
- Algorithmic problems in embedded graphs
- Sample of techniques

Unique shortest paths via Isolation Lemma

- unique shortest path between any two vertices
- probabilistically enforced using Isolation Lemma:
 - perturb each edge-length $\ell(e)$ by $k_e \cdot \varepsilon$, where $k_e \in \{1, \dots, |E|^2\}$ at random
 - each shortest path is unique whp
 - more efficient than lexicographic comparison
- simpler arguments

3-path condition

 P_1, P_2, P_3 three paths from $x \in V(G)$ to a common endpoint

- shortest non-contractible loop from x made of two shortest paths
- ▶ if T_x shortest path tree from x, only loops loop(T_x, e) are candidates
- there are |E(G)| (n-1) candidate loops

3-path condition

Set L_x of loops from x satisfies 3-path condition if:

for any three paths P_1 , P_2 , P_3 from x to a common endpoint, if $P_1 + P_3$ and $P_2 + P_3$ are in L_x , then $P_1 + P_2$ is in L_x

- $L_x \sim$ zeros in some sense
- contractible loops
- loops with even number of edges
- shortest loop from x outside L_x (non-zero) is made of two shortest paths and an edge
- ▶ if membership in L_x is testable in polynomial time, finding shortest loop outside L_x solvable in polynomial time

3-path condition

Set L_x of loops from x satisfies 3-path condition if:

for any three paths P_1 , P_2 , P_3 from x to a common endpoint, if $P_1 + P_3$ and $P_2 + P_3$ are in L_x , then $P_1 + P_2$ is in L_x

- $L_x \sim$ zeros in some sense
- contractible loops
- loops with even number of edges
- shortest loop from x outside L_x (non-zero) is made of two shortest paths and an edge
- ▶ if membership in L_x is testable in polynomial time, finding shortest loop outside L_x solvable in polynomial time
- iterate over $x \in V(G)$ for global shortest

Tree-cotree partition - Planar

G planar. T a spanning tree

Tree-cotree partition - Planar

G planar. T a spanning tree

 $G^* - E(T)^*$ is a spanning tree of the dual graph G^*

Tree-cotree partition - General

- G embedded graph.
- T a spanning tree of G

 $C \subset E(G)$ cotree: C^* spanning tree of G^* disjoint from $E(T)^*$ X edges not in T or C. $X = \{e \in E(G) \mid e \notin E(T) \cup E(C)\}$

- (T, C, X) is a tree-cotree partition
- ▶ X has 2g edges (orientable) or g edges (non-orientable)
- (C^*, T^*, X^*) a tree-cotree partition of G^*
- for any $e \in X$, the cycle in T + e is non-separating

Tree-cotree partition - Example

Tree-cotree partition - Example

Tree-cotree partition - Example

Tree-cotree partition - Cut graph

G embedded graph $H \subset G$ a cut graph if $G \measuredangle H$ is planar

- (T, C, X) is a tree-cotree partition of G
- $T \cup X$ is a cut graph: join faces according to C^*
- By duality, $C^* \cup X^*$ is a cut graph

Tree-cotree partition - Nice loops

G embedded graph (T, C, X) is a tree-cotree partition of G $A = C \cup X$ $e \in A$

 \Rightarrow loop(*T*, *e*) contractible ifff $A^* - e^*$ has a tree component

- ▶ if loop(T, e) contractible \Rightarrow loop(T, e) bounds a disk $D \Rightarrow A e$ contains a cotree of $G \cap D$
- if A − e contains a cotree of G ∩ D ⇒ deform e along A* − e*
 ⇒ cycle homotopic to A − e loop(T, e) disjoint from A* ⇒
 loop(T, e) contractible

Nice loops - Contractible

Nice loops - Contractible

Tree-cotree partition - Nice loops

$$G$$
 embedded graph
(T, C, X) is a tree-cotree partition of G
 $A = C \cup X$
 $e \in A$

 \Rightarrow loop(*T*, *e*) separating ifff $A^* - e^*$ disconnected

•
$$A^* - e^*$$
 gives a way to merge faces

Shortest non-contractible loop

G embedded graph $x \in V(G)$

 L_x contractible loops from x Compute shortest loop outside L_x

- compute shortest path tree T from x
- compute dual $A^* = G^* E(T)^*$
- ▶ compute $B = \{e \in A \mid A^* e^* \text{ has no tree-component}\}$

compute

$$e = \arg\min_{uv \in B} \{ d_T(x, u) + d_T(x, v) + |uv| \}$$

return loop(T, e)

 \Rightarrow linear time per vertex x

Representation of some distances

Theorem

Let f be a specified face in an embedded graph G. Preprocess G in $O(g^2 n \log n)$ time such that:

query $(u, v) \in V \times f$ \longrightarrow $O(\log n) time$ distance $d_G(u, v)$

- compute sp-tree (shortest path) at one vertex
- iteratively move to the neighbor in the face and update the sp-tree

Sergio Cabello

Representation of some distances - Planar

Approach for planar graphs

- compute sp-tree at one vertex of the face
- iteratively move to the neighbor in the face and update the sp-tree
- efficient dynamic data structures to detect what edges come in and out
- reminiscence of kinetic data structures
- use of tree-cotree decomposition
- each (directed) edge appears in a contiguous family of sp-trees (via crossing argument)
- persistence

Parity of crossings of cycles for separating cycles

- α and β cycles in G
- $cr(\alpha, \beta) = \min cr(\alpha', \beta)$ over all tiny deformations α' of α
- $cr_2(\alpha,\beta) = cr(\alpha,\beta) \mod 2$
- computing cr₂(α, β) is easy
 - invariant under tiny deformations
- ▶ useful to work over Z₂-homology
- α separating iff $cr_2(\alpha, \cdot) = 0$
- $cr_2: H_1 \times H_1$ is well-defined and bilinear

Shortest separating cycle

 max independent set reduces to: shortest cycle in planar graph with forbidden pairs

surgery to represent the forbidden pairs

▶ separating cycle ⇔ crosses any closed curve even nb of times

Conclusions

- A taste of the algorithmic problems for embedded graphs
- A taste of the techniques
- Gap theory-practice
- Representation-free algorithms
- H-minor-free graphs
- Simple simplicial complexes, like $\beta_i = O(1)$ for all *i*.